Spaces:
Runtime error
Runtime error
File size: 24,589 Bytes
83b30a3 a65550c 165321e 83b30a3 a65550c 83b30a3 3eda1dd 83b30a3 a65550c 83b30a3 4687e09 a65550c 83b30a3 01179b1 a65550c 01179b1 83b30a3 8639c35 df3ebe1 a65550c 83b30a3 2dcaff1 83b30a3 71e6b18 3e9ca50 436b14e 4eeba3f 3e9ca50 25c68f4 3e9ca50 3eda1dd 17c6e95 3eda1dd 3e9ca50 1ed5fd3 71e6b18 83b30a3 1ed5fd3 83b30a3 1ed5fd3 83b30a3 01179b1 3eda1dd 17c6e95 1815fe4 17c6e95 1815fe4 17c6e95 a65550c 01179b1 a65550c 83b30a3 a65550c 01179b1 a65550c df3ebe1 6697fcb a65550c 01179b1 a65550c 01179b1 a65550c 17c6e95 a65550c 01179b1 83b30a3 01179b1 83b30a3 a65550c 3eda1dd 83b30a3 3eda1dd 83b30a3 01179b1 274c497 a65550c 83b30a3 a65550c 274c497 83b30a3 a65550c 83b30a3 a65550c 83b30a3 a65550c 83b30a3 a65550c 83b30a3 a65550c 83b30a3 17c6e95 83b30a3 a65550c 17c6e95 01179b1 17c6e95 a65550c 83b30a3 4687e09 4eeba3f 17c6e95 01179b1 83b30a3 17c6e95 a65550c a35f45a 01179b1 83b30a3 a35f45a 17c6e95 a65550c a35f45a 274c497 3eda1dd 83b30a3 01179b1 3eda1dd a35f45a a65550c 01179b1 a35f45a 83b30a3 274c497 3eda1dd 83b30a3 a35f45a 3eda1dd a35f45a 3eda1dd a35f45a 3eda1dd a35f45a 83b30a3 a65550c 01179b1 17c6e95 83b30a3 a65550c 83b30a3 a65550c 83b30a3 738f600 83b30a3 01179b1 a65550c 01179b1 17c6e95 e2029e4 83b30a3 e2029e4 83b30a3 4eeba3f 83b30a3 01179b1 3eda1dd 83b30a3 7f8e5de 17c6e95 83b30a3 4d6e62d 17c6e95 83b30a3 3eda1dd 6697fcb 3eda1dd 83b30a3 3eda1dd 83b30a3 3eda1dd 3e9ca50 4eeba3f 3e9ca50 4eeba3f 3e9ca50 83b30a3 01179b1 83b30a3 01179b1 83b30a3 df3ebe1 01179b1 4eeba3f 01179b1 6697fcb 01179b1 83b30a3 01179b1 83b30a3 01179b1 a35f45a 01179b1 5720255 01179b1 83b30a3 01179b1 83b30a3 3bf709c a3290cd 476eb9e a3290cd 476eb9e a3290cd 476eb9e a3290cd 476eb9e a3290cd 476eb9e a3290cd 476eb9e a3290cd 476eb9e a3290cd 83b30a3 a35f45a 83b30a3 a35f45a 274c497 a35f45a 01179b1 8639c35 17c6e95 4d02823 83b30a3 01179b1 83b30a3 01179b1 a65550c 17c6e95 a65550c b5a3831 71e6b18 a65550c 01179b1 a65550c 01179b1 6697fcb 01179b1 a65550c 3eda1dd a65550c 01179b1 a65550c 05d4795 a65550c 01179b1 4687e09 17c6e95 df3ebe1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 |
# from .demo_modelpart import InferenceDemo
import gradio as gr
import os
from threading import Thread
# import time
import cv2
import datetime
# import copy
import torch
import spaces
import numpy as np
from llava import conversation as conversation_lib
from llava.constants import DEFAULT_IMAGE_TOKEN
from llava.constants import (
IMAGE_TOKEN_INDEX,
DEFAULT_IMAGE_TOKEN,
DEFAULT_IM_START_TOKEN,
DEFAULT_IM_END_TOKEN,
)
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import (
tokenizer_image_token,
get_model_name_from_path,
KeywordsStoppingCriteria,
)
from serve_constants import html_header, bibtext, learn_more_markdown, tos_markdown
import requests
from PIL import Image
from io import BytesIO
from transformers import TextStreamer, TextIteratorStreamer
import hashlib
import PIL
import base64
import json
import datetime
import gradio as gr
import gradio_client
import subprocess
import sys
from huggingface_hub import HfApi
from huggingface_hub import login
from huggingface_hub import revision_exists
login(token=os.environ["HF_TOKEN"],
write_permission=True)
api = HfApi()
repo_name = os.environ["LOG_REPO"]
external_log_dir = "./logs"
LOGDIR = external_log_dir
VOTEDIR = "./votes"
def install_gradio_4_35_0():
current_version = gr.__version__
if current_version != "4.35.0":
print(f"Current Gradio version: {current_version}")
print("Installing Gradio 4.35.0...")
subprocess.check_call([sys.executable, "-m", "pip", "install", "gradio==4.35.0", "--force-reinstall"])
print("Gradio 4.35.0 installed successfully.")
else:
print("Gradio 4.35.0 is already installed.")
# Call the function to install Gradio 4.35.0 if needed
install_gradio_4_35_0()
import gradio as gr
import gradio_client
print(f"Gradio version: {gr.__version__}")
print(f"Gradio-client version: {gradio_client.__version__}")
def get_conv_log_filename():
t = datetime.datetime.now()
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-user_conv.json")
return name
def get_conv_vote_filename():
t = datetime.datetime.now()
name = os.path.join(VOTEDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-user_vote.json")
if not os.path.isfile(name):
os.makedirs(os.path.dirname(name), exist_ok=True)
return name
def vote_last_response(state, vote_type, model_selector):
with open(get_conv_vote_filename(), "a") as fout:
data = {
"type": vote_type,
"model": model_selector,
"state": state,
}
fout.write(json.dumps(data) + "\n")
api.upload_file(
path_or_fileobj=get_conv_vote_filename(),
path_in_repo=get_conv_vote_filename().replace("./votes/", ""),
repo_id=repo_name,
repo_type="dataset")
def upvote_last_response(state):
vote_last_response(state, "upvote", "MAmmoTH-VL-8b")
gr.Info("Thank you for your voting!")
return state
def downvote_last_response(state):
vote_last_response(state, "downvote", "MAmmoTH-VL-8b")
gr.Info("Thank you for your voting!")
return state
class InferenceDemo(object):
def __init__(
self, args, model_path, tokenizer, model, image_processor, context_len
) -> None:
disable_torch_init()
self.tokenizer, self.model, self.image_processor, self.context_len = (
tokenizer,
model,
image_processor,
context_len,
)
if "llama-2" in model_name.lower():
conv_mode = "llava_llama_2"
elif "v1" in model_name.lower():
conv_mode = "llava_v1"
elif "mpt" in model_name.lower():
conv_mode = "mpt"
elif "qwen" in model_name.lower():
conv_mode = "qwen_1_5"
elif "pangea" in model_name.lower():
conv_mode = "qwen_1_5"
elif "mammoth-vl" in model_name.lower():
conv_mode = "qwen_2_5"
else:
conv_mode = "llava_v0"
if args.conv_mode is not None and conv_mode != args.conv_mode:
print(
"[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format(
conv_mode, args.conv_mode, args.conv_mode
)
)
else:
args.conv_mode = conv_mode
self.conv_mode = conv_mode
self.conversation = conv_templates[args.conv_mode].copy()
self.num_frames = args.num_frames
class ChatSessionManager:
def __init__(self):
self.chatbot_instance = None
def initialize_chatbot(self, args, model_path, tokenizer, model, image_processor, context_len):
self.chatbot_instance = InferenceDemo(args, model_path, tokenizer, model, image_processor, context_len)
print(f"Initialized Chatbot instance with ID: {id(self.chatbot_instance)}")
def reset_chatbot(self):
self.chatbot_instance = None
def get_chatbot(self, args, model_path, tokenizer, model, image_processor, context_len):
if self.chatbot_instance is None:
self.initialize_chatbot(args, model_path, tokenizer, model, image_processor, context_len)
return self.chatbot_instance
def is_valid_video_filename(name):
video_extensions = ["avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg"]
ext = name.split(".")[-1].lower()
if ext in video_extensions:
return True
else:
return False
def is_valid_image_filename(name):
image_extensions = ["jpg", "jpeg", "png", "bmp", "gif", "tiff", "webp", "heic", "heif", "jfif", "svg", "eps", "raw"]
ext = name.split(".")[-1].lower()
if ext in image_extensions:
return True
else:
return False
def sample_frames_old(video_file, num_frames):
video = cv2.VideoCapture(video_file)
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
interval = total_frames // num_frames
frames = []
for i in range(total_frames):
ret, frame = video.read()
pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
if not ret:
continue
if i % interval == 0:
frames.append(pil_img)
video.release()
return frames
def sample_frames_frames(video_path, frame_count=32):
video_frames = []
vr = VideoReader(video_path, ctx=cpu(0))
total_frames = len(vr)
frame_interval = max(total_frames // frame_count, 1)
for i in range(0, total_frames, frame_interval):
frame = vr[i].asnumpy()
frame_image = Image.fromarray(frame)
buffered = io.BytesIO()
frame_image.save(buffered, format="JPEG")
frame_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
video_frames.append(frame_base64)
if len(video_frames) >= frame_count:
break
# Ensure at least one frame is returned if total frames are less than required
if len(video_frames) < frame_count and total_frames > 0:
for i in range(total_frames):
frame = vr[i].asnumpy()
frame_image = Image.fromarray(frame)
buffered = io.BytesIO()
frame_image.save(buffered, format="JPEG")
frame_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
video_frames.append(frame_base64)
if len(video_frames) >= frame_count:
break
return video_frames
def load_image(image_file):
if image_file.startswith("http") or image_file.startswith("https"):
response = requests.get(image_file)
if response.status_code == 200:
image = Image.open(BytesIO(response.content)).convert("RGB")
else:
print("failed to load the image")
else:
print("Load image from local file")
print(image_file)
image = Image.open(image_file).convert("RGB")
return image
def clear_response(history):
for index_conv in range(1, len(history)):
# loop until get a text response from our model.
conv = history[-index_conv]
if not (conv[0] is None):
break
question = history[-index_conv][0]
history = history[:-index_conv]
return history, question
chat_manager = ChatSessionManager()
def clear_history(history):
chatbot_instance = chat_manager.get_chatbot(args, model_path, tokenizer, model, image_processor, context_len)
chatbot_instance.conversation = conv_templates[chatbot_instance.conv_mode].copy()
return None
def add_message(history, message):
global chat_image_num
if not history:
history = []
our_chatbot = chat_manager.get_chatbot(args, model_path, tokenizer, model, image_processor, context_len)
chat_image_num = 0
if len(message["files"]) <= 1:
for x in message["files"]:
history.append(((x,), None))
chat_image_num += 1
if chat_image_num > 1:
history = []
chat_manager.reset_chatbot()
our_chatbot = chat_manager.get_chatbot(args, model_path, tokenizer, model, image_processor, context_len)
chat_image_num = 0
for x in message["files"]:
history.append(((x,), None))
chat_image_num += 1
if message["text"] is not None:
history.append((message["text"], None))
print(f"### Chatbot instance ID: {id(our_chatbot)}")
return history, gr.MultimodalTextbox(value=None, interactive=False)
else:
for x in message["files"]:
history.append(((x,), None))
if message["text"] is not None:
history.append((message["text"], None))
return history, gr.MultimodalTextbox(value=None, interactive=False)
@spaces.GPU
def bot(history, temperature, top_p, max_output_tokens):
our_chatbot = chat_manager.get_chatbot(args, model_path, tokenizer, model, image_processor, context_len)
print(f"### Chatbot instance ID: {id(our_chatbot)}")
text = history[-1][0]
images_this_term = []
text_this_term = ""
num_new_images = 0
# previous_image = False
for i, message in enumerate(history[:-1]):
if type(message[0]) is tuple:
# if previous_image:
# gr.Warning("Only one image can be uploaded in a conversation. Please reduce the number of images and start a new conversation.")
# our_chatbot.conversation = conv_templates[our_chatbot.conv_mode].copy()
# return None
images_this_term.append(message[0][0])
if is_valid_video_filename(message[0][0]):
# raise ValueError("Video is not supported")
# num_new_images += our_chatbot.num_frames
num_new_images += len(sample_frames(message[0][0], our_chatbot.num_frames))
elif is_valid_image_filename(message[0][0]):
print("#### Load image from local file",message[0][0])
num_new_images += 1
else:
raise ValueError("Invalid file format")
# previous_image = True
else:
num_new_images = 0
# previous_image = False
image_list = []
for f in images_this_term:
if is_valid_video_filename(f):
image_list += sample_frames(f, our_chatbot.num_frames)
elif is_valid_image_filename(f):
image_list.append(load_image(f))
else:
raise ValueError("Invalid image file")
all_image_hash = []
all_image_path = []
for file_path in images_this_term:
with open(file_path, "rb") as file:
file_data = file.read()
file_hash = hashlib.md5(file_data).hexdigest()
all_file_hash.append(file_hash)
t = datetime.datetime.now()
output_dir = os.path.join(
LOGDIR,
"serve_files",
f"{t.year}-{t.month:02d}-{t.day:02d}"
)
os.makedirs(output_dir, exist_ok=True)
if is_valid_image_filename(file_path):
# Process and save images
image = Image.open(file_path).convert("RGB")
filename = os.path.join(output_dir, f"{file_hash}.jpg")
all_file_path.append(filename)
if not os.path.isfile(filename):
print("Image saved to", filename)
image.save(filename)
elif is_valid_video_filename(file_path):
# Simplified video saving
filename = os.path.join(output_dir, f"{file_hash}.mp4")
all_file_path.append(filename)
if not os.path.isfile(filename):
print("Video saved to", filename)
os.makedirs(os.path.dirname(filename), exist_ok=True)
# Directly copy the video file
with open(file_path, "rb") as src, open(filename, "wb") as dst:
dst.write(src.read())
image_tensor = [
our_chatbot.image_processor.preprocess(f, return_tensors="pt")["pixel_values"][
0
]
.half()
.to(our_chatbot.model.device)
for f in image_list
]
image_tensor = torch.stack(image_tensor)
image_token = DEFAULT_IMAGE_TOKEN * num_new_images
inp = text
inp = image_token + "\n" + inp
our_chatbot.conversation.append_message(our_chatbot.conversation.roles[0], inp)
# image = None
our_chatbot.conversation.append_message(our_chatbot.conversation.roles[1], None)
prompt = our_chatbot.conversation.get_prompt()
input_ids = tokenizer_image_token(
prompt, our_chatbot.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt"
).unsqueeze(0).to(our_chatbot.model.device)
# print("### input_id",input_ids)
stop_str = (
our_chatbot.conversation.sep
if our_chatbot.conversation.sep_style != SeparatorStyle.TWO
else our_chatbot.conversation.sep2
)
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(
keywords, our_chatbot.tokenizer, input_ids
)
streamer = TextIteratorStreamer(
our_chatbot.tokenizer, skip_prompt=True, skip_special_tokens=True
)
print(our_chatbot.model.device)
print(input_ids.device)
print(image_tensor.device)
generate_kwargs = dict(
inputs=input_ids,
streamer=streamer,
images=image_tensor,
do_sample=True,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_output_tokens,
use_cache=False,
stopping_criteria=[stopping_criteria],
)
t = Thread(target=our_chatbot.model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for stream_token in streamer:
outputs.append(stream_token)
history[-1] = [text, "".join(outputs)]
yield history
our_chatbot.conversation.messages[-1][-1] = "".join(outputs)
# print("### turn end history", history)
# print("### turn end conv",our_chatbot.conversation)
with open(get_conv_log_filename(), "a") as fout:
data = {
"type": "chat",
"model": "MAmmoTH-VL-8b",
"state": history,
"images": all_image_hash,
"images_path": all_image_path
}
print("#### conv log",data)
fout.write(json.dumps(data) + "\n")
for upload_img in all_image_path:
api.upload_file(
path_or_fileobj=upload_img,
path_in_repo=upload_img.replace("./logs/", ""),
repo_id=repo_name,
repo_type="dataset",
# revision=revision,
# ignore_patterns=["data*"]
)
# upload json
api.upload_file(
path_or_fileobj=get_conv_log_filename(),
path_in_repo=get_conv_log_filename().replace("./logs/", ""),
repo_id=repo_name,
repo_type="dataset")
txt = gr.Textbox(
scale=4,
show_label=False,
placeholder="Enter text and press enter.",
container=False,
)
with gr.Blocks(
css=".message-wrap.svelte-1lcyrx4>div.svelte-1lcyrx4 img {min-width: 40px}",
) as demo:
cur_dir = os.path.dirname(os.path.abspath(__file__))
# gr.Markdown(title_markdown)
gr.HTML(html_header)
with gr.Column():
with gr.Accordion("Parameters", open=False) as parameter_row:
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=1,
step=0.1,
interactive=True,
label="Top P",
)
max_output_tokens = gr.Slider(
minimum=0,
maximum=8192,
value=4096,
step=256,
interactive=True,
label="Max output tokens",
)
with gr.Row():
chatbot = gr.Chatbot([], elem_id="MAmmoTH-VL-8B", bubble_full_width=False, height=750)
with gr.Row():
upvote_btn = gr.Button(value="👍 Upvote", interactive=True)
downvote_btn = gr.Button(value="👎 Downvote", interactive=True)
flag_btn = gr.Button(value="⚠️ Flag", interactive=True)
# stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=True)
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=True)
clear_btn = gr.Button(value="🗑️ Clear history", interactive=True)
chat_input = gr.MultimodalTextbox(
interactive=True,
file_types=["image", "video"],
placeholder="Enter message or upload file...",
show_label=False,
submit_btn="🚀"
)
print(cur_dir)
gr.Examples(
examples_per_page=20,
examples=[
[
{
"files": [
f"{cur_dir}/examples/172197131626056_P7966202.png",
],
"text": "Why this image funny?",
}
],
[
{
"files": [
f"{cur_dir}/examples/realcase_doc.png",
],
"text": "Read text in the image",
}
],
[
{
"files": [
f"{cur_dir}/examples/realcase_weather.jpg",
],
"text": "List the weather for Monday to Friday",
}
],
[
{
"files": [
f"{cur_dir}/examples/realcase_knowledge.jpg",
],
"text": "Answer the following question based on the provided image: What country do these planes belong to?",
}
],
[
{
"files": [
f"{cur_dir}/examples/realcase_math.jpg",
],
"text": "Find the measure of angle 3.",
}
],
[
{
"files": [
f"{cur_dir}/examples/realcase_interact.jpg",
],
"text": "Please perfectly describe this cartoon illustration in as much detail as possible",
}
],
[
{
"files": [
f"{cur_dir}/examples/realcase_perfer.jpg",
],
"text": "This is an image of a room. It could either be a real image captured in the room or a rendered image from a 3D scene reconstruction technique that is trained using real images of the room. A rendered image usually contains some visible artifacts (eg. blurred regions due to under-reconstructed areas) that do not faithfully represent the actual scene. You need to decide if its a real image or a rendered image by giving each image a photorealism score between 1 and 5.",
}
],
[
{
"files": [
f"{cur_dir}/examples/realcase_multi1.png",
f"{cur_dir}/examples/realcase_multi2.png",
f"{cur_dir}/examples/realcase_multi3.png",
f"{cur_dir}/examples/realcase_multi4.png",
f"{cur_dir}/examples/realcase_multi5.png",
],
"text": "Based on the five species in the images, draw a food chain. Explain the role of each species in the food chain.",
}
],
],
inputs=[chat_input],
label="Real World Image Cases",
)
gr.Examples(
examples=[
[
{
"files": [
f"{cur_dir}/examples/realcase_video.mp4",
],
"text": "Please describe the video in detail.",
},
]
],
inputs=[chat_input],
label="Real World Video Case"
)
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
gr.Markdown(bibtext)
chat_input.submit(
add_message, [chatbot, chat_input], [chatbot, chat_input]
).then(bot, [chatbot, temperature, top_p, max_output_tokens], chatbot, api_name="bot_response").then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
# chatbot.like(print_like_dislike, None, None)
clear_btn.click(
fn=clear_history, inputs=[chatbot], outputs=[chatbot], api_name="clear_all"
)
upvote_btn.click(
fn=upvote_last_response, inputs=chatbot, outputs=chatbot, api_name="upvote_last_response"
)
downvote_btn.click(
fn=downvote_last_response, inputs=chatbot, outputs=chatbot, api_name="upvote_last_response"
)
demo.queue()
if __name__ == "__main__":
import argparse
argparser = argparse.ArgumentParser()
argparser.add_argument("--server_name", default="0.0.0.0", type=str)
argparser.add_argument("--port", default="6123", type=str)
argparser.add_argument(
"--model_path", default="MMSFT/MAmmoTH-VL-8B", type=str
)
# argparser.add_argument("--model-path", type=str, default="facebook/opt-350m")
argparser.add_argument("--model-base", type=str, default=None)
argparser.add_argument("--num-gpus", type=int, default=1)
argparser.add_argument("--conv-mode", type=str, default=None)
argparser.add_argument("--temperature", type=float, default=0.7)
argparser.add_argument("--max-new-tokens", type=int, default=4096)
argparser.add_argument("--num_frames", type=int, default=16)
argparser.add_argument("--load-8bit", action="store_true")
argparser.add_argument("--load-4bit", action="store_true")
argparser.add_argument("--debug", action="store_true")
args = argparser.parse_args()
model_path = args.model_path
filt_invalid = "cut"
model_name = get_model_name_from_path(args.model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit)
model=model.to(torch.device('cuda'))
chat_image_num = 0
demo.launch() |