Spaces:
Runtime error
Runtime error
File size: 14,125 Bytes
a65550c 165321e e2029e4 a65550c 3eda1dd a65550c 4687e09 a65550c e2029e4 a65550c 01179b1 a65550c 01179b1 fd162d3 28de084 df3ebe1 a65550c e2029e4 2dcaff1 71e6b18 3eda1dd 1ed5fd3 71e6b18 1ed5fd3 01179b1 3eda1dd a65550c 01179b1 a65550c e2029e4 a65550c 01179b1 a65550c df3ebe1 a65550c 01179b1 a65550c e2029e4 01179b1 a65550c e2029e4 a65550c 01179b1 e2029e4 a65550c 3eda1dd e2029e4 3eda1dd e2029e4 01179b1 a65550c e2029e4 a65550c e2029e4 a65550c e2029e4 a65550c e2029e4 a65550c e2029e4 a65550c 01179b1 a65550c 01179b1 a65550c 4687e09 a65550c e2029e4 01179b1 a65550c e2029e4 01179b1 e2029e4 a65550c 3eda1dd 01179b1 3eda1dd a65550c 01179b1 e2029e4 3eda1dd d091d7f 3eda1dd a65550c 01179b1 e2029e4 a65550c ff17e6b 738f600 ff17e6b e2029e4 01179b1 a65550c 01179b1 e2029e4 01179b1 e2029e4 ff17e6b e2029e4 ff17e6b e2029e4 3eda1dd e2029e4 3eda1dd e2029e4 3eda1dd e2029e4 3eda1dd 01179b1 e2029e4 01179b1 e2029e4 df3ebe1 01179b1 3eda1dd 01179b1 165321e 01179b1 5720255 01179b1 e2029e4 01179b1 e2029e4 23dffc4 3bf709c e2029e4 01179b1 e2029e4 01179b1 4d02823 01179b1 e2029e4 01179b1 a65550c e2029e4 a65550c e2029e4 71e6b18 a65550c 01179b1 a65550c 01179b1 df3ebe1 01179b1 a65550c 3eda1dd a65550c 01179b1 a65550c 05d4795 a65550c 01179b1 4687e09 a65550c df3ebe1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
import gradio as gr
import os
from threading import Thread
from queue import Queue
import time
import cv2
import datetime
import torch
import spaces
import numpy as np
import json
import hashlib
import PIL
from typing import Iterator
from llava import conversation as conversation_lib
from llava.constants import DEFAULT_IMAGE_TOKEN
from llava.constants import (
IMAGE_TOKEN_INDEX,
DEFAULT_IMAGE_TOKEN,
DEFAULT_IM_START_TOKEN,
DEFAULT_IM_END_TOKEN,
)
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import (
tokenizer_image_token,
get_model_name_from_path,
KeywordsStoppingCriteria,
)
import sys
from serve_constants import html_header
import requests
from PIL import Image
from io import BytesIO
from transformers import TextIteratorStreamer
import subprocess
external_log_dir = "./logs"
LOGDIR = external_log_dir
def install_gradio_4_35_0():
current_version = gr.__version__
if current_version != "4.35.0":
print(f"Current Gradio version: {current_version}")
print("Installing Gradio 4.35.0...")
subprocess.check_call([sys.executable, "-m", "pip", "install", "gradio==4.35.0", "--force-reinstall"])
print("Gradio 4.35.0 installed successfully.")
else:
print("Gradio 4.35.0 is already installed.")
install_gradio_4_35_0()
print(f"Gradio version: {gr.__version__}")
def get_conv_log_filename():
t = datetime.datetime.now()
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-user_conv.json")
return name
class InferenceDemo(object):
def __init__(
self, args, model_path, tokenizer, model, image_processor, context_len
) -> None:
disable_torch_init()
self.tokenizer = tokenizer
self.model = model
self.image_processor = image_processor
self.context_len = context_len
model_name = get_model_name_from_path(model_path)
if "llama-2" in model_name.lower():
conv_mode = "llava_llama_2"
elif "v1" in model_name.lower():
conv_mode = "llava_v1"
elif "mpt" in model_name.lower():
conv_mode = "mpt"
elif "qwen" in model_name.lower():
conv_mode = "qwen_1_5"
elif "pangea" in model_name.lower():
conv_mode = "qwen_1_5"
else:
conv_mode = "llava_v0"
if args.conv_mode is not None and conv_mode != args.conv_mode:
print(
"[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format(
conv_mode, args.conv_mode, args.conv_mode
)
)
else:
args.conv_mode = conv_mode
self.conv_mode = conv_mode
self.conversation = conv_templates[args.conv_mode].copy()
self.num_frames = args.num_frames
def process_stream(streamer: TextIteratorStreamer, history: list, q: Queue):
"""Process the output stream and put partial text into a queue"""
try:
current_message = ""
for new_text in streamer:
current_message += new_text
history[-1][1] = current_message
q.put(history.copy())
time.sleep(0.02) # Add a small delay to prevent overloading
except Exception as e:
print(f"Error in process_stream: {e}")
finally:
q.put(None) # Signal that we're done
def stream_output(history: list, q: Queue) -> Iterator[list]:
"""Yield updated history as it comes through the queue"""
while True:
val = q.get()
if val is None:
break
yield val
q.task_done()
def is_valid_video_filename(name):
video_extensions = ["avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg"]
ext = name.split(".")[-1].lower()
return ext in video_extensions
def is_valid_image_filename(name):
image_extensions = ["jpg", "jpeg", "png", "bmp", "gif", "tiff", "webp", "heic", "heif", "jfif", "svg", "eps", "raw"]
ext = name.split(".")[-1].lower()
return ext in image_extensions
def sample_frames(video_file, num_frames):
video = cv2.VideoCapture(video_file)
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
interval = total_frames // num_frames
frames = []
for i in range(total_frames):
ret, frame = video.read()
if not ret:
continue
pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
if i % interval == 0:
frames.append(pil_img)
video.release()
return frames
def load_image(image_file):
if image_file.startswith(("http://", "https://")):
response = requests.get(image_file)
if response.status_code == 200:
image = Image.open(BytesIO(response.content)).convert("RGB")
else:
print("Failed to load the image")
return None
else:
print("Load image from local file:", image_file)
image = Image.open(image_file).convert("RGB")
return image
def clear_history(history):
global our_chatbot
our_chatbot.conversation = conv_templates[our_chatbot.conv_mode].copy()
return None
def add_message(history, message):
global our_chatbot
if len(history) == 0:
our_chatbot = InferenceDemo(
args, model_path, tokenizer, model, image_processor, context_len
)
for x in message["files"]:
history.append(((x,), None))
if message["text"] is not None:
history.append((message["text"], None))
return history, gr.MultimodalTextbox(value=None, interactive=False)
@spaces.GPU
def bot(history):
global start_tstamp, finish_tstamp
start_tstamp = time.time()
text = history[-1][0]
images_this_term = []
num_new_images = 0
for i, message in enumerate(history[:-1]):
if isinstance(message[0], tuple):
images_this_term.append(message[0][0])
if is_valid_video_filename(message[0][0]):
raise ValueError("Video is not supported")
elif is_valid_image_filename(message[0][0]):
num_new_images += 1
else:
raise ValueError("Invalid image file")
else:
num_new_images = 0
assert len(images_this_term) > 0, "Must have an image"
image_list = []
for f in images_this_term:
if is_valid_video_filename(f):
image_list += sample_frames(f, our_chatbot.num_frames)
elif is_valid_image_filename(f):
image_list.append(load_image(f))
else:
raise ValueError("Invalid image file")
image_tensor = [
our_chatbot.image_processor.preprocess(f, return_tensors="pt")["pixel_values"][0]
.half()
.to(our_chatbot.model.device)
for f in image_list
]
# Process image hashes
all_image_hash = []
for image_path in images_this_term:
with open(image_path, "rb") as image_file:
image_data = image_file.read()
image_hash = hashlib.md5(image_data).hexdigest()
all_image_hash.append(image_hash)
image = PIL.Image.open(image_path).convert("RGB")
t = datetime.datetime.now()
filename = os.path.join(
LOGDIR,
"serve_images",
f"{t.year}-{t.month:02d}-{t.day:02d}",
f"{image_hash}.jpg",
)
if not os.path.isfile(filename):
os.makedirs(os.path.dirname(filename), exist_ok=True)
image.save(filename)
image_tensor = torch.stack(image_tensor)
image_token = DEFAULT_IMAGE_TOKEN * num_new_images
inp = image_token + "\n" + text
our_chatbot.conversation.append_message(our_chatbot.conversation.roles[0], inp)
our_chatbot.conversation.append_message(our_chatbot.conversation.roles[1], None)
prompt = our_chatbot.conversation.get_prompt()
input_ids = (
tokenizer_image_token(
prompt, our_chatbot.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt"
)
.unsqueeze(0)
.to(our_chatbot.model.device)
)
stop_str = (
our_chatbot.conversation.sep
if our_chatbot.conversation.sep_style != SeparatorStyle.TWO
else our_chatbot.conversation.sep2
)
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(
keywords, our_chatbot.tokenizer, input_ids
)
# Set up streaming
q = Queue()
streamer = TextIteratorStreamer(
our_chatbot.tokenizer,
skip_prompt=True,
skip_special_tokens=True
)
# Start generation in a separate thread
thread = Thread(
target=process_stream,
args=(streamer, history, q)
)
thread.start()
# Start the generation
with torch.inference_mode():
output_ids = our_chatbot.model.generate(
input_ids,
images=image_tensor,
do_sample=True,
temperature=0.2,
max_new_tokens=1024,
streamer=streamer,
use_cache=True,
stopping_criteria=[stopping_criteria],
)
finish_tstamp = time.time()
# Log conversation
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(finish_tstamp, 4),
"type": "chat",
"model": "Pangea-7b",
"start": round(start_tstamp, 4),
"finish": round(finish_tstamp, 4),
"state": history,
"images": all_image_hash,
}
fout.write(json.dumps(data) + "\n")
# Return a generator that will yield updated history
return stream_output(history, q)
with gr.Blocks(css=".message-wrap.svelte-1lcyrx4>div.svelte-1lcyrx4 img {min-width: 40px}") as demo:
gr.HTML(html_header)
with gr.Column():
with gr.Row():
chatbot = gr.Chatbot([], elem_id="Pangea", bubble_full_width=False, height=750)
with gr.Row():
upvote_btn = gr.Button(value="👍 Upvote", interactive=True)
downvote_btn = gr.Button(value="👎 Downvote", interactive=True)
flag_btn = gr.Button(value="⚠️ Flag", interactive=True)
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=True)
clear_btn = gr.Button(value="🗑️ Clear history", interactive=True)
chat_input = gr.MultimodalTextbox(
interactive=True,
file_types=["image"],
placeholder="Enter message or upload file...",
show_label=False,
submit_btn="🚀"
)
cur_dir = os.path.dirname(os.path.abspath(__file__))
gr.Examples(
examples_per_page=20,
examples=[
[
{
"files": [
f"{cur_dir}/examples/user_example_07.jpg",
],
"text": "那要我问问你,你这个是什么🐱?",
},
],
[
{
"files": [
f"{cur_dir}/examples/user_example_05.jpg",
],
"text": "この猫の目の大きさは、どのような理由で他の猫と比べて特に大きく見えますか?",
},
],
[
{
"files": [
f"{cur_dir}/examples/172197131626056_P7966202.png",
],
"text": "Why this image funny?",
},
],
],
inputs=[chat_input],
label="Image",
)
chat_msg = chat_input.submit(
add_message,
[chatbot, chat_input],
[chatbot, chat_input],
queue=False
).then(
bot,
chatbot,
chatbot,
api_name="bot_response"
).then(
lambda: gr.MultimodalTextbox(interactive=True),
None,
[chat_input]
)
clear_btn.click(
fn=clear_history,
inputs=[chatbot],
outputs=[chatbot],
api_name="clear_all",
queue=False
)
regenerate_btn.click(
fn=lambda history: history[:-1],
inputs=[chatbot],
outputs=[chatbot],
queue=False
).then(
bot,
chatbot,
chatbot
)
demo.queue(concurrency_count=5)
if __name__ == "__main__":
import argparse
argparser = argparse.ArgumentParser()
argparser.add_argument("--server_name", default="0.0.0.0", type=str)
argparser.add_argument("--port", default="6123", type=str)
argparser.add_argument(
"--model_path", default="neulab/Pangea-7B", type=str
)
# argparser.add_argument("--model-path", type=str, default="facebook/opt-350m")
argparser.add_argument("--model-base", type=str, default=None)
argparser.add_argument("--num-gpus", type=int, default=1)
argparser.add_argument("--conv-mode", type=str, default=None)
argparser.add_argument("--temperature", type=float, default=0.7)
argparser.add_argument("--max-new-tokens", type=int, default=4096)
argparser.add_argument("--num_frames", type=int, default=16)
argparser.add_argument("--load-8bit", action="store_true")
argparser.add_argument("--load-4bit", action="store_true")
argparser.add_argument("--debug", action="store_true")
args = argparser.parse_args()
model_path = args.model_path
filt_invalid = "cut"
model_name = get_model_name_from_path(args.model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit)
model=model.to(torch.device('cuda'))
our_chatbot = None
demo.launch() |