MAmmoTH-VL-8B / llava /eval /evaluate_interleave.py
HaoZhang534
first
a65550c
raw
history blame
10.7 kB
import re
from rouge import Rouge
import argparse
import os
import json
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
spot_the_diff = ["Spot-the-Diff", "Birds-to-Words", "CLEVR-Change"]
image_edit_instruct = ["IEdit", "HQ-Edit", "MagicBrush"]
visual_story_telling = ["AESOP", "FlintstonesSV", "PororoSV", "VIST"]
visual_cloze = ["COMICS_Dialogue", "RecipeQA_VisualCloze"]
text_rich_vqa = ["WebQA", "TQA", "OCR-VQA", "DocVQA"]
multi_image_vqa = ["MIT-States_StateCoherence", "MIT-States_PropertyCoherence", "VISION", "RecipeQA_ImageCoherence"]
puzzle = ["RAVEN"]
nlrv2 = ["NLVR2_Mantis"]
qbench = ["QBench"]
class Eval:
def __init__(self):
self.periodStrip = re.compile("(?!<=\d)(\.)(?!\d)")
self.commaStrip = re.compile("(\d)(\,)(\d)")
self.punct = [
";",
r"/",
"[",
"]",
'"',
"{",
"}",
"(",
")",
"=",
"+",
"\\",
"_",
"-",
">",
"<",
"@",
"`",
",",
"?",
"!",
]
def processPunctuation(self, inText):
outText = inText
for p in self.punct:
if (p + " " in inText or " " + p in inText) or (
re.search(self.commaStrip, inText) != None
):
outText = outText.replace(p, "")
else:
outText = outText.replace(p, " ")
outText = self.periodStrip.sub("", outText, re.UNICODE)
return outText
def process(self, answer):
answer = answer.replace("\n", " ")
answer = answer.replace("\t", " ")
answer = answer.strip()
answer = self.processPunctuation(answer)
answer = answer.strip('\'')
answer = answer.strip('\"')
answer = answer.strip(')')
answer = answer.strip('(')
answer = answer.strip().lower()
return answer
def evaluate_rouge(self,preds):
rouge = Rouge()
acc = {'f': []}
eval_list = []
for i, res in enumerate(preds):
sample_id = res['sample_id']
# print(sample_id)
gt_ans = self.process(res["gt_response"])
pred_ans = self.process(res["pred_response"])
# assert gt_ans != ''
if gt_ans == '':
continue
if pred_ans == '':
s = 0
else:
if len(pred_ans) > 512:
pred_ans = pred_ans[0: 512]
s = rouge.get_scores(pred_ans, gt_ans)[0]['rouge-l']['f']
acc['f'].append(s)
eval_list.append({'id':str(sample_id),'score':str(round(s,3))})
results = {'Rouge-L f': np.mean(acc['f'])}
return results,eval_list
def judge_multi_choice(self,sample):
sample_id = sample['sample_id']
gt_ans = sample["gt_response"]
pred_ans = sample["pred_response"]
if ":" in pred_ans:
a_list = pred_ans.split(":")
a_list = [a.strip() for a in a_list ]
for a in a_list:
if len(a) == 1 and a[-1] in ["a", "b", "c", "d", "e", "f", "g", "h"]:
pred_ans = a
if pred_ans == gt_ans:
return 1
else:
return 0
def process_sample(self,sample):
sample["gt_response"] = self.process(sample["gt_response"])
sample["pred_response"] = self.process(sample["pred_response"])
def evaluate_multichoice(self, preditions):
correct = 0
eval_list = []
for i, sample in enumerate(preditions):
self.process_sample(sample)
score = self.judge_multi_choice(sample)
sample_id = sample['sample_id']
sample['result'] = score
eval_list.append({'id':str(sample_id),'score':str(score)})
correct+=score
return {'Accuracy':correct/len(preditions)},eval_list
def evaluate_multi_choice_image(self,preditions):
correct = 0
eval_list = []
for i,sample in enumerate(preditions):
gt_ans = self.process(sample["gt_response"])
pred_ans = self.process(sample["pred_response"])
sample_id = sample['sample_id']
if ":" in pred_ans:
a_list = pred_ans.split(":")
a_list = [a.strip() for a in a_list ]
for a in a_list:
if len(a) == 1 and a[-1] in ["a", "b", "c", "d", "e", "f", "g", "h"]:
pred_ans = a
if gt_ans == pred_ans:
score = 1
else:
score = 0
sample_id = sample['sample_id']
sample['result'] = score
eval_list.append({'id':str(sample_id),'score':str(score)})
correct+=score
return {'Accuracy':correct/len(preditions)},eval_list
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--result-dir', type=str, required=True)
args = parser.parse_args()
result_file = os.path.join(args.result_dir, "result.jsonl")
if not os.path.exists(result_file):
print('No prediction file found')
exit(0)
with open(result_file, 'r') as f:
preds_all = [json.loads(line) for line in f]
preds_all_dict = dict()
for pred in preds_all:
if pred["dataset"] not in preds_all_dict:
preds_all_dict[pred["dataset"]] = list()
preds_all_dict[pred["dataset"]].append(pred)
image_choice_dataset_list = ["recipeqa-RecipeQA_VisualCloze", "RecipeQA_ImageCoherence", "COMICS_Panel"]
E = Eval()
eval_result_list = dict()
eval_result_list_detail = dict()
for dataset in preds_all_dict:
preds = preds_all_dict[dataset]
question_type = preds[0]["question_type"]
if question_type == 'open-ended':
eval_result, eval_list = E.evaluate_rouge(preds)
elif question_type == 'multi-choice' or dataset == 'nlrv2':
if dataset in image_choice_dataset_list:
eval_result, eval_list = E.evaluate_multi_choice_image(preds)
else:
eval_result, eval_list = E.evaluate_multichoice(preds)
else:
eval_result = 'Dataset not supported'
print('Dataset not supported')
exit(0)
print(dataset, end = ': ')
print(eval_result)
eval_result_list[dataset] = eval_result
eval_result_list_detail[dataset] = eval_list
os.makedirs(args.result_dir, exist_ok=True)
with open(os.path.join(args.result_dir, 'eval_dataset.json'), 'w') as f:
json.dump(eval_result_list, f, indent=4)
with open(os.path.join(args.result_dir,'eval_dataset_details.json'), 'w') as f:
json.dump(eval_result_list_detail, f, indent=4)
eval_cat_list = dict()
print()
# spot_the_diff
score = 0
count = 0
for dataset in eval_result_list:
if dataset in spot_the_diff:
count += 1
score += list(eval_result_list[dataset].values())[0]
if count > 0:
score /= count
eval_cat_list["spot_the_diff"] = score
print("spot_the_diff", end = ': ')
print('{:.2f}'.format(100 * score))
# image_edit_instruct
score = 0
count = 0
for dataset in eval_result_list:
if dataset in image_edit_instruct:
count += 1
score += list(eval_result_list[dataset].values())[0]
if count > 0:
score /= count
eval_cat_list["image_edit_instruct"] = score
print("image_edit_instruct", end = ': ')
print('{:.2f}'.format(100 * score))
# visual_story_telling
score = 0
count = 0
for dataset in eval_result_list:
if dataset in visual_story_telling:
count += 1
score += list(eval_result_list[dataset].values())[0]
if count > 0:
score /= count
eval_cat_list["visual_story_telling"] = score
print("visual_story_telling", end = ': ')
print('{:.2f}'.format(100 * score))
# visual_cloze
score = 0
count = 0
for dataset in eval_result_list:
if dataset in visual_cloze:
count += 1
score += list(eval_result_list[dataset].values())[0]
if count > 0:
score /= count
eval_cat_list["visual_cloze"] = score
print("visual_cloze", end = ': ')
print('{:.2f}'.format(100 * score))
# text_rich_vqa
score = 0
count = 0
for dataset in eval_result_list:
if dataset in text_rich_vqa:
count += 1
score += list(eval_result_list[dataset].values())[0]
if count > 0:
score /= count
eval_cat_list["text_rich_vqa"] = score
print("text_rich_vqa", end = ': ')
print('{:.2f}'.format(100 * score))
# multi_image_vqa
score = 0
count = 0
for dataset in eval_result_list:
if dataset in multi_image_vqa:
count += 1
score += list(eval_result_list[dataset].values())[0]
if count > 0:
score /= count
eval_cat_list["multi_image_vqa"] = score
print("multi_image_vqa", end = ': ')
print('{:.2f}'.format(100 * score))
# puzzle
score = 0
count = 0
for dataset in eval_result_list:
if dataset in puzzle:
count += 1
score += list(eval_result_list[dataset].values())[0]
if count > 0:
score /= count
eval_cat_list["puzzle"] = score
print("puzzle", end = ': ')
print('{:.2f}'.format(100 * score))
# nlrv2
score = 0
count = 0
for dataset in eval_result_list:
if dataset in nlrv2:
count += 1
score += list(eval_result_list[dataset].values())[0]
if count > 0:
score /= count
eval_cat_list["nlrv2"] = score
print("nlrv2", end = ': ')
print('{:.2f}'.format(100 * score))
# qbench
score = 0
count = 0
for dataset in eval_result_list:
if dataset in qbench:
count += 1
score += list(eval_result_list[dataset].values())[0]
if count > 0:
score /= count
eval_cat_list["qbench"] = score
print("qbench", end = ': ')
print('{:.2f}'.format(100 * score))
with open(os.path.join(args.result_dir,'eval_cat.json'), 'w') as f:
json.dump(eval_cat_list, f, indent=4)