Spaces:
Runtime error
Runtime error
# Copyright 2023 Haotian Liu | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import warnings | |
import shutil | |
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig | |
import torch | |
from llava.model import * | |
from llava.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | |
from llava.utils import rank0_print | |
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", attn_implementation="flash_attention_2", customized_config=None, **kwargs): | |
kwargs = {"device_map": device_map} | |
if load_8bit: | |
kwargs["load_in_8bit"] = True | |
elif load_4bit: | |
kwargs["load_in_4bit"] = True | |
kwargs["quantization_config"] = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4") | |
else: | |
kwargs["torch_dtype"] = torch.float16 | |
if customized_config is not None: | |
kwargs["config"] = customized_config | |
if "llava" in model_name.lower(): | |
# Load LLaVA model | |
if "lora" in model_name.lower() and model_base is None: | |
warnings.warn( | |
"There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged." | |
) | |
if "lora" in model_name.lower() and model_base is not None: | |
lora_cfg_pretrained = AutoConfig.from_pretrained(model_path) | |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | |
rank0_print("Loading LLaVA from base model...") | |
if "mixtral" in model_name.lower(): | |
from llava.model.language_model.llava_mixtral import LlavaMixtralConfig | |
lora_cfg_pretrained = LlavaMixtralConfig.from_pretrained(model_path) | |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | |
model = LlavaMixtralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, attn_implementation=attn_implementation, **kwargs) | |
elif "mistral" in model_name.lower(): | |
from llava.model.language_model.llava_mistral import LlavaMistralConfig | |
lora_cfg_pretrained = LlavaMistralConfig.from_pretrained(model_path) | |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | |
model = LlavaMistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, attn_implementation=attn_implementation, **kwargs) | |
elif "gemma" in model_name.lower(): | |
from llava.model.language_model.llava_gemma import LlavaGemmaConfig | |
lora_cfg_pretrained = LlavaGemmaConfig.from_pretrained(model_path) | |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | |
model = LlavaGemmaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, attn_implementation=attn_implementation, **kwargs) | |
else: | |
from llava.model.language_model.llava_llama import LlavaConfig | |
lora_cfg_pretrained = LlavaConfig.from_pretrained(model_path) | |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | |
model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, attn_implementation=attn_implementation, **kwargs) | |
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features | |
if model.lm_head.weight.shape[0] != token_num: | |
model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) | |
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) | |
rank0_print("Loading additional LLaVA weights...") | |
if os.path.exists(os.path.join(model_path, "non_lora_trainables.bin")): | |
non_lora_trainables = torch.load(os.path.join(model_path, "non_lora_trainables.bin"), map_location="cpu") | |
else: | |
# this is probably from HF Hub | |
from huggingface_hub import hf_hub_download | |
def load_from_hf(repo_id, filename, subfolder=None): | |
cache_file = hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder) | |
return torch.load(cache_file, map_location="cpu") | |
non_lora_trainables = load_from_hf(model_path, "non_lora_trainables.bin") | |
non_lora_trainables = {(k[11:] if k.startswith("base_model.") else k): v for k, v in non_lora_trainables.items()} | |
if any(k.startswith("model.model.") for k in non_lora_trainables): | |
non_lora_trainables = {(k[6:] if k.startswith("model.") else k): v for k, v in non_lora_trainables.items()} | |
model.load_state_dict(non_lora_trainables, strict=False) | |
from peft import PeftModel | |
rank0_print("Loading LoRA weights...") | |
model = PeftModel.from_pretrained(model, model_path) | |
rank0_print("Merging LoRA weights...") | |
model = model.merge_and_unload() | |
rank0_print("Model is loaded...") | |
elif model_base is not None: | |
# this may be mm projector only | |
rank0_print(f"Loading LLaVA from base model {model_base}...") | |
if "mixtral" in model_name.lower(): | |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | |
cfg_pretrained = AutoConfig.from_pretrained(model_path) | |
model = LlavaMixtralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, attn_implementation=attn_implementation, **kwargs) | |
elif "mistral" in model_name.lower() or "zephyr" in model_name.lower(): | |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | |
cfg_pretrained = AutoConfig.from_pretrained(model_path) | |
model = LlavaMistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, attn_implementation=attn_implementation, **kwargs) | |
elif "gemma" in model_name.lower(): | |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | |
cfg_pretrained = AutoConfig.from_pretrained(model_path) | |
model = LlavaGemmaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, attn_implementation=attn_implementation, **kwargs) | |
elif ( | |
"wizardlm-2" in model_name.lower() | |
and "vicuna" in model_name.lower() | |
or "llama" in model_name.lower() | |
or "yi" in model_name.lower() | |
or "nous-hermes" in model_name.lower() | |
or "llava-v1.6-34b" in model_name.lower() | |
or "llava-v1.5" in model_name.lower() | |
): | |
from llava.model.language_model.llava_llama import LlavaConfig | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) | |
if customized_config is None: | |
llava_cfg = LlavaConfig.from_pretrained(model_path) | |
if "v1.5" in model_name.lower(): | |
llava_cfg.delay_load = True # a workaround for correctly loading v1.5 models | |
else: | |
llava_cfg = customized_config | |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | |
llava_cfg = LlavaConfig.from_pretrained(model_path) | |
model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=llava_cfg, **kwargs) | |
else: | |
raise ValueError(f"Model {model_name} not supported") | |
mm_projector_weights = torch.load(os.path.join(model_path, "mm_projector.bin"), map_location="cpu") | |
mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()} | |
model.load_state_dict(mm_projector_weights, strict=False) | |
else: | |
rank0_print(f"Loaded LLaVA model: {model_path}") | |
if "mixtral" in model_name.lower(): | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
model = LlavaMixtralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, attn_implementation=attn_implementation, **kwargs) | |
elif "mistral" in model_name.lower() or "zephyr" in model_name.lower(): | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
model = LlavaMistralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, attn_implementation=attn_implementation, **kwargs) | |
elif ( | |
"wizardlm-2" in model_name.lower() | |
and "vicuna" in model_name.lower() | |
or "llama" in model_name.lower() | |
or "yi" in model_name.lower() | |
or "nous-hermes" in model_name.lower() | |
or "llava-v1.6-34b" in model_name.lower() | |
or "llava-v1.5" in model_name.lower() | |
): | |
from llava.model.language_model.llava_llama import LlavaConfig | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) | |
if customized_config is None: | |
llava_cfg = LlavaConfig.from_pretrained(model_path) | |
if "v1.5" in model_name.lower(): | |
llava_cfg.delay_load = True # a workaround for correctly loading v1.5 models | |
else: | |
llava_cfg = customized_config | |
model = LlavaLlamaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, attn_implementation=attn_implementation, config=llava_cfg, **kwargs) | |
elif "qwen" in model_name.lower(): | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) | |
model = LlavaQwenForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, attn_implementation=attn_implementation, **kwargs) | |
elif "gemma" in model_name.lower(): | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) | |
cfg_pretrained = AutoConfig.from_pretrained(model_path) | |
model = LlavaGemmaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=cfg_pretrained, attn_implementation=attn_implementation, **kwargs) | |
else: | |
rank0_print("\n\n\nWarning : No matching llava architecture, auto load llava_llama. If it is not intended, specify it in model_name\n\n\n") | |
try: | |
from llava.model.language_model.llava_llama import LlavaConfig | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) | |
if customized_config is None: | |
llava_cfg = LlavaConfig.from_pretrained(model_path) | |
if "v1.5" in model_path.lower(): | |
llava_cfg.delay_load = True # a workaround for correctly loading v1.5 models | |
else: | |
llava_cfg = customized_config | |
model = LlavaLlamaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, attn_implementation=attn_implementation, config=llava_cfg, **kwargs) | |
except: | |
raise ValueError(f"Model {model_name} not supported") | |
else: | |
# Load language model | |
if model_base is not None: | |
# PEFT model | |
from peft import PeftModel | |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | |
model = AutoModelForCausalLM.from_pretrained(model_base, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto") | |
print(f"Loading LoRA weights from {model_path}") | |
model = PeftModel.from_pretrained(model, model_path) | |
print(f"Merging weights") | |
model = model.merge_and_unload() | |
print("Convert to FP16...") | |
model.to(torch.float16) | |
else: | |
use_fast = False | |
if "mpt" in model_name.lower().replace("prompt", ""): | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) | |
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs) | |
else: | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) | |
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) | |
rank0_print(f"Model Class: {model.__class__.__name__}") | |
image_processor = None | |
if "llava" in model_name.lower(): | |
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) | |
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) | |
if mm_use_im_patch_token: | |
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
if mm_use_im_start_end: | |
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) | |
model.resize_token_embeddings(len(tokenizer)) | |
vision_tower = model.get_vision_tower() | |
if not vision_tower.is_loaded: | |
vision_tower.load_model(device_map=device_map) | |
if device_map != "auto": | |
vision_tower.to(device="cuda", dtype=torch.float16) | |
image_processor = vision_tower.image_processor | |
if hasattr(model.config, "max_sequence_length"): | |
context_len = model.config.max_sequence_length | |
elif hasattr(model.config, "max_position_embeddings"): | |
context_len = model.config.max_position_embeddings | |
elif hasattr(model.config, "tokenizer_model_max_length"): | |
context_len = model.config.tokenizer_model_max_length | |
else: | |
context_len = 2048 | |
return tokenizer, model, image_processor, context_len | |