|
import gradio as gr |
|
from transformers import GPT2Tokenizer, GPT2LMHeadModel, TrainingArguments, Trainer |
|
import tiktoken |
|
import torch |
|
|
|
|
|
model_name = "paramasivan27/gpt2_for_q_and_a" |
|
tokenizer = GPT2Tokenizer.from_pretrained(model_name) |
|
model = GPT2LMHeadModel.from_pretrained(model_name) |
|
|
|
def ask_question(question): |
|
inputs = tokenizer.encode('Q: ' + question + ' A:', return_tensors='pt') |
|
attention_mask = torch.ones(inputs.shape) |
|
outputs = model.generate(inputs, attention_mask = attention_mask, max_new_tokens=100, num_return_sequences=1) |
|
gen_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
question, answer = gen_text.split(' A:') |
|
return question, answer |
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
demo = gr.ChatInterface( |
|
ask_question, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |