paramasivan27's picture
Update space
f0b5e8c
raw
history blame
1.38 kB
import gradio as gr
from transformers import GPT2Tokenizer, GPT2LMHeadModel, TrainingArguments, Trainer
import tiktoken
import torch
model_name = "paramasivan27/gpt2_for_q_and_a"
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)
def ask_question(question):
inputs = tokenizer.encode('Q: ' + question + ' A:', return_tensors='pt')
attention_mask = torch.ones(inputs.shape)
outputs = model.generate(inputs, attention_mask = attention_mask, max_new_tokens=100, num_return_sequences=1)
gen_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
question, answer = gen_text.split(' A:')
return question, answer
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
ask_question,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()