import gradio as gr from transformers import GPT2Tokenizer, GPT2LMHeadModel, TrainingArguments, Trainer import tiktoken import torch model_name = "paramasivan27/gpt2_for_q_and_a" tokenizer = GPT2Tokenizer.from_pretrained(model_name) model = GPT2LMHeadModel.from_pretrained(model_name) def ask_question(question, m_tokens): inputs = tokenizer.encode('Q: ' + question + ' A:', return_tensors='pt') attention_mask = torch.ones(inputs.shape) outputs = model.generate(inputs, attention_mask = attention_mask, max_new_tokens=100, num_return_sequences=1) gen_text = tokenizer.decode(outputs[0], skip_special_tokens=True) question, answer = gen_text.split(' A:') return answer """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( ask_question, title="Cohort 22 - Group 16: AIML Q and A GPT2" ) if __name__ == "__main__": demo.launch()