Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,927 Bytes
2ccf6b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
from pathlib import Path
import torchaudio
import gradio as gr
import numpy as np
import torch
from hifigan.config import v1
from hifigan.denoiser import Denoiser
from hifigan.env import AttrDict
from hifigan.models import Generator as HiFiGAN
#from BigVGAN.models import BigVGAN
#from BigVGAN.env import AttrDict as BigVGANAttrDict
from pflow.models.pflow_tts import pflowTTS
from pflow.text import text_to_sequence, sequence_to_text
from pflow.utils.utils import intersperse
from pflow.data.text_mel_datamodule import mel_spectrogram
from pflow.utils.model import normalize
BIGVGAN_CONFIG = {
"resblock": "1",
"num_gpus": 0,
"batch_size": 32,
"learning_rate": 0.0001,
"adam_b1": 0.8,
"adam_b2": 0.99,
"lr_decay": 0.999,
"seed": 1234,
"upsample_rates": [4,4,2,2,2,2],
"upsample_kernel_sizes": [8,8,4,4,4,4],
"upsample_initial_channel": 1536,
"resblock_kernel_sizes": [3,7,11],
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
"activation": "snakebeta",
"snake_logscale": True,
"resolutions": [[1024, 120, 600], [2048, 240, 1200], [512, 50, 240]],
"mpd_reshapes": [2, 3, 5, 7, 11],
"use_spectral_norm": False,
"discriminator_channel_mult": 1,
"segment_size": 8192,
"num_mels": 80,
"num_freq": 1025,
"n_fft": 1024,
"hop_size": 256,
"win_size": 1024,
"sampling_rate": 22050,
"fmin": 0,
"fmax": 8000,
"fmax_for_loss": None,
"num_workers": 4,
"dist_config": {
"dist_backend": "nccl",
"dist_url": "tcp://localhost:54321",
"world_size": 1
}
}
PFLOW_MODEL_PATH = 'checkpoint_epoch=499.ckpt'
VOCODER_MODEL_PATH = 'g_00120000'
VOCODER_BIGVGAN_MODEL_PATH = 'g_05000000'
wav, sr = torchaudio.load('prompt.wav')
prompt = mel_spectrogram(
wav,
1024,
80,
22050,
256,
1024,
0,
8000,
center=False,
)[:,:,:264]
def process_text(text: str, device: torch.device):
x = torch.tensor(
intersperse(text_to_sequence(text, ["ukr_cleaners"]), 0),
dtype=torch.long,
device=device,
)[None]
x_lengths = torch.tensor([x.shape[-1]], dtype=torch.long, device=device)
x_phones = sequence_to_text(x.squeeze(0).tolist())
return {"x_orig": text, "x": x, "x_lengths": x_lengths, 'x_phones':x_phones}
def load_hifigan(checkpoint_path, device):
h = AttrDict(v1)
hifigan = HiFiGAN(h).to(device)
hifigan.load_state_dict(torch.load(checkpoint_path, map_location=device)["generator"])
_ = hifigan.eval()
hifigan.remove_weight_norm()
return hifigan
def load_bigvgan(checkpoint_path, device):
print("Loading '{}'".format(checkpoint_path))
checkpoint_dict = torch.load(checkpoint_path, map_location=device)
h = BigVGANAttrDict(BIGVGAN_CONFIG)
torch.manual_seed(h.seed)
generator = BigVGAN(h).to(device)
generator.load_state_dict(checkpoint_dict['generator'])
generator.eval()
generator.remove_weight_norm()
return generator
def to_waveform(mel, vocoder, denoiser=None):
audio = vocoder(mel).clamp(-1, 1)
if denoiser is not None:
audio = denoiser(audio.squeeze(), strength=0.00025).cpu().squeeze()
return audio.cpu().squeeze()
def get_device():
if torch.cuda.is_available():
print("[+] GPU Available! Using GPU")
device = torch.device("cuda")
else:
print("[-] GPU not available or forced CPU run! Using CPU")
device = torch.device("cpu")
return device
device = get_device()
model = pflowTTS.load_from_checkpoint(PFLOW_MODEL_PATH, map_location=device)
_ = model.eval()
#vocoder = load_bigvgan(VOCODER_BIGVGAN_MODEL_PATH, device)
vocoder = load_hifigan(VOCODER_MODEL_PATH, device)
denoiser = Denoiser(vocoder, mode="zeros")
@torch.inference_mode()
def synthesise(text, temperature, speed):
if len(text) > 1000:
raise gr.Error("Текст повинен бути коротшим за 1000 символів.")
text_processed = process_text(text.strip(), device)
output = model.synthesise(
text_processed["x"],
text_processed["x_lengths"],
n_timesteps=40,
temperature=temperature,
length_scale=1/speed,
prompt= normalize(prompt, model.mel_mean, model.mel_std)
)
waveform = to_waveform(output["mel"], vocoder, denoiser)
return text_processed['x_phones'][1::2], (22050, waveform.numpy())
description = f'''
# Експериментальна апка для генерації аудіо з тексту.
pflow checkpoint {PFLOW_MODEL_PATH}
vocoder: HIFIGAN(трейнутий на датасеті, з нуля) - {VOCODER_MODEL_PATH}
'''
if __name__ == "__main__":
i = gr.Interface(
fn=synthesise,
description=description,
inputs=[
gr.Text(label='Текст для синтезу:', lines=5, max_lines=10),
gr.Slider(minimum=0.0, maximum=1.0, label="Температура", value=0.2),
gr.Slider(minimum=0.6, maximum=2.0, label="Швидкість", value=1.0)
],
outputs=[
gr.Text(label='Фонемізований текст:', lines=5),
gr.Audio(
label="Згенероване аудіо:",
autoplay=False,
streaming=False,
type="numpy",
)
],
allow_flagging ='manual',
flagging_options=[("Якщо дуже погоне аудіо, тисни цю кнопку.", "negative")],
cache_examples=True,
title='',
# description=description,
# article=article,
# examples=examples,
)
i.queue(max_size=20, default_concurrency_limit=4)
i.launch(share=False, server_name="0.0.0.0")
|