Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,749 Bytes
2ccf6b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
from typing import Tuple
import numpy as np
import torch
from torch import nn, Tensor
from torch.nn import Module
import torch.nn.functional as F
from einops import rearrange, repeat
from beartype import beartype
from beartype.typing import Optional
def exists(val):
return val is not None
class AlignerNet(Module):
"""alignment model https://arxiv.org/pdf/2108.10447.pdf """
def __init__(
self,
dim_in=80,
dim_hidden=512,
attn_channels=80,
temperature=0.0005,
):
super().__init__()
self.temperature = temperature
self.key_layers = nn.ModuleList([
nn.Conv1d(
dim_hidden,
dim_hidden * 2,
kernel_size=3,
padding=1,
bias=True,
),
nn.ReLU(inplace=True),
nn.Conv1d(dim_hidden * 2, attn_channels, kernel_size=1, padding=0, bias=True)
])
self.query_layers = nn.ModuleList([
nn.Conv1d(
dim_in,
dim_in * 2,
kernel_size=3,
padding=1,
bias=True,
),
nn.ReLU(inplace=True),
nn.Conv1d(dim_in * 2, dim_in, kernel_size=1, padding=0, bias=True),
nn.ReLU(inplace=True),
nn.Conv1d(dim_in, attn_channels, kernel_size=1, padding=0, bias=True)
])
@beartype
def forward(
self,
queries: Tensor,
keys: Tensor,
mask: Optional[Tensor] = None
):
key_out = keys
for layer in self.key_layers:
key_out = layer(key_out)
query_out = queries
for layer in self.query_layers:
query_out = layer(query_out)
key_out = rearrange(key_out, 'b c t -> b t c')
query_out = rearrange(query_out, 'b c t -> b t c')
attn_logp = torch.cdist(query_out, key_out)
attn_logp = rearrange(attn_logp, 'b ... -> b 1 ...')
if exists(mask):
mask = rearrange(mask.bool(), '... c -> ... 1 c')
attn_logp.data.masked_fill_(~mask, -torch.finfo(attn_logp.dtype).max)
attn = attn_logp.softmax(dim = -1)
return attn, attn_logp
def pad_tensor(input, pad, value=0):
pad = [item for sublist in reversed(pad) for item in sublist] # Flatten the tuple
assert len(pad) // 2 == len(input.shape), 'Padding dimensions do not match input dimensions'
return F.pad(input, pad, mode='constant', value=value)
def maximum_path(value, mask, const=None):
device = value.device
dtype = value.dtype
if not exists(const):
const = torch.tensor(float('-inf')).to(device) # Patch for Sphinx complaint
value = value * mask
b, t_x, t_y = value.shape
direction = torch.zeros(value.shape, dtype=torch.int64, device=device)
v = torch.zeros((b, t_x), dtype=torch.float32, device=device)
x_range = torch.arange(t_x, dtype=torch.float32, device=device).view(1, -1)
for j in range(t_y):
v0 = pad_tensor(v, ((0, 0), (1, 0)), value = const)[:, :-1]
v1 = v
max_mask = v1 >= v0
v_max = torch.where(max_mask, v1, v0)
direction[:, :, j] = max_mask
index_mask = x_range <= j
v = torch.where(index_mask.view(1,-1), v_max + value[:, :, j], const)
direction = torch.where(mask.bool(), direction, 1)
path = torch.zeros(value.shape, dtype=torch.float32, device=device)
index = mask[:, :, 0].sum(1).long() - 1
index_range = torch.arange(b, device=device)
for j in reversed(range(t_y)):
path[index_range, index, j] = 1
index = index + direction[index_range, index, j] - 1
path = path * mask.float()
path = path.to(dtype=dtype)
return path
class ForwardSumLoss(Module):
def __init__(
self,
blank_logprob = -1
):
super().__init__()
self.blank_logprob = blank_logprob
self.ctc_loss = torch.nn.CTCLoss(
blank = 0, # check this value
zero_infinity = True
)
def forward(self, attn_logprob, key_lens, query_lens):
device, blank_logprob = attn_logprob.device, self.blank_logprob
max_key_len = attn_logprob.size(-1)
# Reorder input to [query_len, batch_size, key_len]
attn_logprob = rearrange(attn_logprob, 'b 1 c t -> c b t')
# Add blank label
attn_logprob = F.pad(attn_logprob, (1, 0, 0, 0, 0, 0), value = blank_logprob)
# Convert to log probabilities
# Note: Mask out probs beyond key_len
mask_value = -torch.finfo(attn_logprob.dtype).max
attn_logprob.masked_fill_(torch.arange(max_key_len + 1, device=device, dtype=torch.long).view(1, 1, -1) > key_lens.view(1, -1, 1), mask_value)
attn_logprob = attn_logprob.log_softmax(dim = -1)
# Target sequences
target_seqs = torch.arange(1, max_key_len + 1, device=device, dtype=torch.long)
target_seqs = repeat(target_seqs, 'n -> b n', b = key_lens.numel())
# Evaluate CTC loss
cost = self.ctc_loss(attn_logprob, target_seqs, query_lens, key_lens)
return cost
class BinLoss(Module):
def forward(self, attn_hard, attn_logprob, key_lens):
batch, device = attn_logprob.shape[0], attn_logprob.device
max_key_len = attn_logprob.size(-1)
# Reorder input to [query_len, batch_size, key_len]
attn_logprob = rearrange(attn_logprob, 'b 1 c t -> c b t')
attn_hard = rearrange(attn_hard, 'b t c -> c b t')
mask_value = -torch.finfo(attn_logprob.dtype).max
attn_logprob.masked_fill_(torch.arange(max_key_len, device=device, dtype=torch.long).view(1, 1, -1) > key_lens.view(1, -1, 1), mask_value)
attn_logprob = attn_logprob.log_softmax(dim = -1)
return (attn_hard * attn_logprob).sum() / batch
class Aligner(Module):
def __init__(
self,
dim_in,
dim_hidden,
attn_channels=80,
temperature=0.0005
):
super().__init__()
self.dim_in = dim_in
self.dim_hidden = dim_hidden
self.attn_channels = attn_channels
self.temperature = temperature
self.aligner = AlignerNet(
dim_in = self.dim_in,
dim_hidden = self.dim_hidden,
attn_channels = self.attn_channels,
temperature = self.temperature
)
def forward(
self,
x,
x_mask,
y,
y_mask
):
alignment_soft, alignment_logprob = self.aligner(y, rearrange(x, 'b d t -> b t d'), x_mask)
x_mask = rearrange(x_mask, '... i -> ... i 1')
y_mask = rearrange(y_mask, '... j -> ... 1 j')
attn_mask = x_mask * y_mask
attn_mask = rearrange(attn_mask, 'b 1 i j -> b i j')
alignment_soft = rearrange(alignment_soft, 'b 1 c t -> b t c')
alignment_mask = maximum_path(alignment_soft, attn_mask)
alignment_hard = torch.sum(alignment_mask, -1).int()
return alignment_hard, alignment_soft, alignment_logprob, alignment_mask
if __name__ == '__main__':
batch_size = 10
seq_len_y = 200 # length of sequence y
seq_len_x = 35
feature_dim = 80 # feature dimension
x = torch.randn(batch_size, 512, seq_len_x)
x = x.transpose(1,2) #dim-1 is the channels for conv
y = torch.randn(batch_size, seq_len_y, feature_dim)
y = y.transpose(1,2) #dim-1 is the channels for conv
# Create masks
x_mask = torch.ones(batch_size, 1, seq_len_x)
y_mask = torch.ones(batch_size, 1, seq_len_y)
align = Aligner(dim_in = 80, dim_hidden=512, attn_channels=80)
alignment_hard, alignment_soft, alignment_logprob, alignment_mas = align(x, x_mask, y, y_mask) |