pflowtts_ukr_demo / pflow /models /baselightningmodule.py
Serhiy Stetskovych
Initial commit
2ccf6b5
"""
This is a base lightning module that can be used to train a model.
The benefit of this abstraction is that all the logic outside of model definition can be reused for different models.
"""
import inspect
from abc import ABC
from typing import Any, Dict
import torch
from lightning import LightningModule
from lightning.pytorch.utilities import grad_norm
from pflow import utils
from pflow.utils.utils import plot_tensor
from pflow.models.components import commons
log = utils.get_pylogger(__name__)
class BaseLightningClass(LightningModule, ABC):
def update_data_statistics(self, data_statistics):
if data_statistics is None:
data_statistics = {
"mel_mean": 0.0,
"mel_std": 1.0,
}
self.register_buffer("mel_mean", torch.tensor(data_statistics["mel_mean"]))
self.register_buffer("mel_std", torch.tensor(data_statistics["mel_std"]))
def configure_optimizers(self) -> Any:
optimizer = self.hparams.optimizer(params=self.parameters())
if self.hparams.scheduler not in (None, {}):
scheduler_args = {}
# Manage last epoch for exponential schedulers
if "last_epoch" in inspect.signature(self.hparams.scheduler.scheduler).parameters:
if hasattr(self, "ckpt_loaded_epoch"):
current_epoch = self.ckpt_loaded_epoch - 1
else:
current_epoch = -1
scheduler_args.update({"optimizer": optimizer})
scheduler = self.hparams.scheduler.scheduler(**scheduler_args)
print(self.ckpt_loaded_epoch - 1)
if hasattr(self, "ckpt_loaded_epoch"):
scheduler.last_epoch = self.ckpt_loaded_epoch - 1
else:
scheduler.last_epoch = -1
return {
"optimizer": optimizer,
"lr_scheduler": {
"scheduler": scheduler,
# "interval": self.hparams.scheduler.lightning_args.interval,
# "frequency": self.hparams.scheduler.lightning_args.frequency,
# "name": "learning_rate",
"monitor": "val_loss",
},
}
return {"optimizer": optimizer}
def get_losses(self, batch):
x, x_lengths = batch["x"], batch["x_lengths"]
y, y_lengths = batch["y"], batch["y_lengths"]
# prompt_spec = batch["prompt_spec"]
# prompt_lengths = batch["prompt_lengths"]
# prompt_slice, ids_slice = commons.rand_slice_segments(
# prompt_spec,
# prompt_lengths,
# self.prompt_size
# )
prompt_slice = None
dur_loss, prior_loss, diff_loss, attn = self(
x=x,
x_lengths=x_lengths,
y=y,
y_lengths=y_lengths,
prompt=prompt_slice,
)
return ({
"dur_loss": dur_loss,
"prior_loss": prior_loss,
"diff_loss": diff_loss,
},
{
"attn": attn
}
)
def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
self.ckpt_loaded_epoch = checkpoint["epoch"] # pylint: disable=attribute-defined-outside-init
def training_step(self, batch: Any, batch_idx: int):
loss_dict, attn_dict = self.get_losses(batch)
self.log(
"step",
float(self.global_step),
on_step=True,
on_epoch=True,
logger=True,
sync_dist=True,
)
self.log(
"sub_loss/train_dur_loss",
loss_dict["dur_loss"],
on_step=True,
on_epoch=True,
logger=True,
sync_dist=True,
)
self.log(
"sub_loss/train_prior_loss",
loss_dict["prior_loss"],
on_step=True,
on_epoch=True,
logger=True,
sync_dist=True,
)
self.log(
"sub_loss/train_diff_loss",
loss_dict["diff_loss"],
on_step=True,
on_epoch=True,
logger=True,
sync_dist=True,
)
total_loss = sum(loss_dict.values())
self.log(
"loss/train",
total_loss,
on_step=True,
on_epoch=True,
logger=True,
prog_bar=True,
sync_dist=True,
)
attn = attn_dict["attn"][0]
self.logger.experiment.add_image(
f"train/alignment",
plot_tensor(attn.cpu()),
self.current_epoch,
dataformats="HWC",
)
return {"loss": total_loss, "log": loss_dict}
def validation_step(self, batch: Any, batch_idx: int):
loss_dict, attn_dict = self.get_losses(batch)
self.log(
"sub_loss/val_dur_loss",
loss_dict["dur_loss"],
on_step=True,
on_epoch=True,
logger=True,
sync_dist=True,
)
self.log(
"sub_loss/val_prior_loss",
loss_dict["prior_loss"],
on_step=True,
on_epoch=True,
logger=True,
sync_dist=True,
)
self.log(
"sub_loss/val_diff_loss",
loss_dict["diff_loss"],
on_step=True,
on_epoch=True,
logger=True,
sync_dist=True,
)
total_loss = sum(loss_dict.values())
self.log(
"loss/val",
total_loss,
on_step=True,
on_epoch=True,
logger=True,
prog_bar=True,
sync_dist=True,
)
attn = attn_dict["attn"][0]
self.logger.experiment.add_image(
f"val/alignment",
plot_tensor(attn.cpu()),
self.current_epoch,
dataformats="HWC",
)
return total_loss
def on_validation_end(self) -> None:
if self.trainer.is_global_zero:
one_batch = next(iter(self.trainer.val_dataloaders))
if self.current_epoch == 0:
log.debug("Plotting original samples")
for i in range(2):
y = one_batch["y"][i].unsqueeze(0).to(self.device)
self.logger.experiment.add_image(
f"original/{i}",
plot_tensor(y.squeeze().cpu()),
self.current_epoch,
dataformats="HWC",
)
log.debug("Synthesising...")
for i in range(2):
x = one_batch["x"][i].unsqueeze(0).to(self.device)
x_lengths = one_batch["x_lengths"][i].unsqueeze(0).to(self.device)
y = one_batch["y"][i].unsqueeze(0).to(self.device)
y_lengths = one_batch["y_lengths"][i].unsqueeze(0).to(self.device)
# prompt = one_batch["prompt_spec"][i].unsqueeze(0).to(self.device)
# prompt_lengths = one_batch["prompt_lengths"][i].unsqueeze(0).to(self.device)
prompt = y
prompt_lengths = y_lengths
prompt_slice, ids_slice = commons.rand_slice_segments(
prompt, prompt_lengths, self.prompt_size
)
output = self.synthesise(x[:, :x_lengths], x_lengths, prompt=prompt_slice, n_timesteps=10, guidance_scale=0.0)
y_enc, y_dec = output["encoder_outputs"], output["decoder_outputs"]
attn = output["attn"]
self.logger.experiment.add_image(
f"generated_enc/{i}",
plot_tensor(y_enc.squeeze().cpu()),
self.current_epoch,
dataformats="HWC",
)
self.logger.experiment.add_image(
f"generated_dec/{i}",
plot_tensor(y_dec.squeeze().cpu()),
self.current_epoch,
dataformats="HWC",
)
self.logger.experiment.add_image(
f"alignment/{i}",
plot_tensor(attn.squeeze().cpu()),
self.current_epoch,
dataformats="HWC",
)
def on_before_optimizer_step(self, optimizer):
self.log_dict({f"grad_norm/{k}": v for k, v in grad_norm(self, norm_type=2).items()})