File size: 17,473 Bytes
4d231f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e551631
4d231f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import os
import pickle
import re
import nltk
import psutil
import numpy as np
from nltk.tokenize import word_tokenize
import tensorflow as tf
from tensorflow.keras import regularizers
from tensorflow.keras.layers import Layer, Bidirectional, Dense, LayerNormalization, Dropout, Embedding, LSTM, Conv1D, MaxPooling1D, BatchNormalization, GRU, MultiHeadAttention
from tensorflow.keras.models import Sequential
from tensorflow.keras.preprocessing.sequence import pad_sequences
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from sklearn.model_selection import train_test_split
from tensorflow.keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping
from sklearn.utils import shuffle
from typing import List, Optional, Set
from gensim.models import KeyedVectors
from pathlib import Path
import tempfile
import zipfile
import requests
from transformers import AutoTokenizer, AutoModel
import random

# Konfiguracja 艣rodowiska
gpus = tf.config.list_physical_devices("GPU")
if gpus:
    try:
        for gpu in gpus:
            tf.config.experimental.set_memory_growth(gpu, True)
        print("Dynamiczne zarz膮dzanie pami臋ci膮 ustawione dla wszystkich GPU.")
    except RuntimeError as e:
        print(f"B艂膮d podczas ustawiania dynamicznego zarz膮dzania pami臋ci膮: {e}")

os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
tf.keras.mixed_precision.set_global_policy('float32')
nltk.download('punkt')
nltk.download('wordnet')
nltk.download('stopwords')

ZAPISZ_KATALOG = "mozgi"
KATALOG_LOGOW = "logs"
directory = "test"
log_dir = Path('logs')
tf.keras.backend.clear_session()
lemmatizer = WordNetLemmatizer()
stop_words = set(stopwords.words('english'))

class TextProcessor:
    class PositionalEncoding(Layer):
        def __init__(self, d_model, **kwargs):
            super().__init__(**kwargs)
            self.d_model = d_model

        def get_angles(self, position, i):
            angles = 1 / np.power(10000, (2 * (i // 2)) / np.float32(self.d_model))
            return position * angles

        def call(self, inputs):
            position = tf.shape(inputs)[1]
            angle_rads = self.get_angles(
                position=np.arange(position)[:, np.newaxis],
                i=np.arange(self.d_model)[np.newaxis, :]
            )
            sines = np.sin(angle_rads[:, 0::2])
            cosines = np.cos(angle_rads[:, 1::2])
            pos_encoding = np.concatenate([sines, cosines], axis=-1)
            pos_encoding = tf.cast(pos_encoding, dtype=tf.float32)
            return inputs + pos_encoding

    class WrappedMultiHeadAttention(Layer):
        def __init__(self, num_heads, d_model, rate=0.2, **kwargs):
            super().__init__(**kwargs)
            self.attention = MultiHeadAttention(num_heads=num_heads, key_dim=d_model, dropout=rate)

        def call(self, inputs):
            return self.attention(inputs, inputs)

    class TransformerBlock(Layer):
        def __init__(self, num_heads, d_model, dff, rate=0.2, **kwargs):
            super().__init__(**kwargs)
            self.attention = TextProcessor.WrappedMultiHeadAttention(num_heads, d_model, rate)
            self.ffn = Sequential([
                Dense(dff, activation='relu'),
                Dense(d_model)
            ])
            self.layernorm1 = LayerNormalization(epsilon=1e-6)
            self.layernorm2 = LayerNormalization(epsilon=1e-6)
            self.dropout1 = Dropout(rate)
            self.dropout2 = Dropout(rate)
            self.pos_encoding = TextProcessor.PositionalEncoding(d_model)

        def call(self, inputs, training):
            inputs = self.pos_encoding(inputs)
            attn_output = self.attention(inputs)
            attn_output = self.dropout1(attn_output, training=training)
            out1 = self.layernorm1(inputs + attn_output)
            ffn_output = self.ffn(out1)
            ffn_output = self.dropout2(ffn_output, training=training)
            return self.layernorm2(out1 + ffn_output)

    class TextGenerationCallback(tf.keras.callbacks.Callback):
        def __init__(self, tokenizer, input_sequence_length, model_name, model, temperature=1.0):
            super().__init__()
            self.tokenizer = tokenizer
            self.input_sequence_length = input_sequence_length
            self.model_name = model_name
            self.model = model
            self.temperature = temperature
            self.generated_text_interval = 5
            self.seed_texts = ["Dlaczego Python jest popularny?", "Co to jest AI?", "Wyja艣nij sieci neuronowe", "Dlaczego dane s膮 wa偶ne?"]
            self.current_seed_text_index = 0

        def on_epoch_end(self, epoch, logs=None):
            if epoch % self.generated_text_interval == 0:
                seed_text = self.seed_texts[self.current_seed_text_index]
                self.current_seed_text_index = (self.current_seed_text_index + 1) % len(self.seed_texts)
                generated_text = self.generate_text(seed_text, self.temperature, self.input_sequence_length)
                print(f"\nWygenerowany tekst z modelu '{self.model_name}' po epoce {epoch + 1}:\n{generated_text}\n")

        def generate_text(self, seed_text, temperature=1.0, num_words=50):
            result = []
            for _ in range(num_words):
                encoded_text = self.tokenizer.encode(seed_text, return_tensors='tf')
                predictions = self.model(encoded_text)
                predictions = predictions.logits[:, -1, :] / temperature
                predicted_id = tf.random.categorical(predictions, num_samples=1)[-1, 0].numpy()
                seed_text += self.tokenizer.decode([predicted_id])
                result.append(self.tokenizer.decode([predicted_id]))
            return ' '.join(result)

    def __init__(
        self,
        directory: str,
        oov_token: str = '<OOV>',
        glove_file: str = None,
        gpt2_model_dir: str = 'gpt2',
        model_name: str = 'gpt2',
        input_sequence_length: int = 100,
        output_sequence_length: int = 100,
        batch_size: int = 32,
        lowercase: bool = False,
        handle_numbers: bool = True,
        handle_special_characters: bool = False,
        handle_stop_words: bool = True,
        lemmatize: bool = True,
        handle_python_code: bool = True,
        lstm_units: int = 128,
        dropout_rate: float = 0.2,
        epochs: int = 100,
        learning_rate: float = 0.00001,
        amsgrad: bool = True,
        kernel_regularizer: float = 0.001,
        recurrent_regularizer: float = 0.001,
        bias_regularizer: float = 0.001,
        num_difficult_sequences: int = 50,
        stop_words: Optional[Set[str]] = None,
        log_dir: Optional[str] = 'logs',
    ):
        self.oov_token = oov_token
        self.directory = directory
        self.glove_file = glove_file
        self.gpt2_model_dir = Path(gpt2_model_dir)
        self.model_name = model_name
        self.input_sequence_length = input_sequence_length
        self.output_sequence_length = output_sequence_length
        self.batch_size = batch_size
        self.lowercase = lowercase
        self.handle_numbers = handle_numbers
        self.handle_special_characters = handle_special_characters
        self.handle_stop_words = handle_stop_words
        self.lemmatize = lemmatize
        self.handle_python_code = handle_python_code
        self.lstm_units = lstm_units
        self.dropout_rate = dropout_rate
        self.epochs = epochs
        self.learning_rate = learning_rate
        self.amsgrad = amsgrad
        self.kernel_regularizer = kernel_regularizer
        self.recurrent_regularizer = recurrent_regularizer
        self.bias_regularizer = bias_regularizer
        self.num_difficult_sequences = num_difficult_sequences
        self.stop_words = set(stopwords.words('english')) if stop_words is None else stop_words
        self.tokenizer = None
        self.embedding_matrix = None
        self.vocab_size = 0
        self.model = None
        self.processed_texts = []
        self.log_dir = log_dir
        self.glove_model = None
        self.gpt2_model = None
        self.gpt2_tokenizer = None

        self.load_models()

    def create_tokenizer(self, texts: List[str]) -> None:
        if not texts:
            raise ValueError("Lista tekst贸w jest pusta lub None.")

        self.tokenizer = AutoTokenizer.from_pretrained("gpt2")
        self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})

        print("Tokenizacja zako艅czona. Liczba unikalnych token贸w:", len(self.tokenizer.get_vocab()))

    def load_models(self):
        print("艁adowanie modelu GloVe...")
        self.glove_model = self.load_glove_model()
        print("Model GloVe za艂adowany.")

        print("艁adowanie modelu GPT-2...")
        if not Path(self.gpt2_model_dir).exists():
            print(f"Model GPT-2 ({self.model_name}) nie jest dost臋pny lokalnie. Pobieranie...")
            self.gpt2_model = AutoModel.from_pretrained(self.model_name)
            self.gpt2_tokenizer = AutoTokenizer.from_pretrained(self.model_name)
            self.gpt2_model.save_pretrained(self.gpt2_model_dir)
            self.gpt2_tokenizer.save_pretrained(self.gpt2_model_dir)
        else:
            self.load_gpt2_model()
        print("Model GPT-2 za艂adowany.")

    def download_file(self, url, save_path):
        response = requests.get(url, stream=True)
        total_length = response.headers.get('content-length')

        if total_length is None:
            with open(save_path, 'wb') as f:
                for chunk in response.iter_content(chunk_size=8192):
                    if chunk:
                        f.write(chunk)
        else:
            dl = 0
            total_length = int(total_length)
            with open(save_path, 'wb') as f:
                for chunk in response.iter_content(chunk_size=8192):
                    if chunk:
                        dl += len(chunk)
                        f.write(chunk)
                        done = int(50 * dl / total_length)
                        print("\r[%s%s]" % ('=' * done, ' ' * (50-done)), end='')

    def load_glove_model(self):
        glove_file = "glove.6B.100d.txt"
        if not os.path.exists(glove_file):
            print(f"Plik {glove_file} nie zosta艂 znaleziony. Rozpoczynam pobieranie...")
            try:
                url = "http://nlp.stanford.edu/data/glove.6B.zip"
                with tempfile.NamedTemporaryFile(delete=False) as tmp_zip:
                    self.download_file(url, tmp_zip.name)
                    with zipfile.ZipFile(tmp_zip.name) as zf:
                        zf.extractall('.')
                        glove_file = 'glove.6B.100d.txt'
                print("Pobrano i wypakowano plik GloVe.")
            except Exception as e:
                print(f"B艂膮d podczas pobierania lub wypakowywania pliku GloVe: {e}")
                return None

        glove_model = {}
        with open(glove_file, 'r', encoding='utf-8') as f:
            for line in f:
                split_line = line.split()
                word = split_line[0]
                embedding = np.array([float(val) for val in split_line[1:]])
                glove_model[word] = embedding

        return glove_model

    def load_gpt2_model(self):
        try:
            self.gpt2_model = AutoModel.from_pretrained(self.model_name)
            self.gpt2_tokenizer = AutoTokenizer.from_pretrained(self.model_name)
            print("Standardowy model GPT-2 za艂adowany pomy艣lnie.")
        except Exception as e:
            print(f"B艂膮d podczas wczytywania standardowego modelu GPT-2: {e}")

    def preprocess_text(self, text_input):
        if isinstance(text_input, bytes):
            text = text_input.decode('utf-8')
        elif isinstance(text_input, tf.Tensor):
            text = text_input.numpy().decode('utf-8')
        else:
            text = text_input

        tokens = word_tokenize(text)
        if self.lowercase:
            tokens = [token.lower() for token in tokens]
        if self.lemmatize:
            tokens = [lemmatizer.lemmatize(token) for token in tokens]
        if self.handle_stop_words:
            tokens = [token for token in tokens if token not in self.stop_words]

        return ' '.join(tokens)

    def create_embedding_matrix(self, vocab_size, embedding_dim=100):
        embedding_matrix = np.zeros((vocab_size, embedding_dim))
        missed_embeddings = 0

        all_embeddings = np.stack(list(self.glove_model.values()))
        mean_embedding = np.mean(all_embeddings, axis=0)

        for word, idx in self.tokenizer.get_vocab().items():
            embedding_vector = self.glove_model.get(word)

            if embedding_vector is not None:
                embedding_matrix[idx] = embedding_vector
            else:
                missed_embeddings += 1
                embedding_matrix[idx] = mean_embedding

        print(f"Liczba s艂贸w bez dost臋pnego wektora embeddingu: {missed_embeddings}")

        return embedding_matrix

    def create_sequences(self):
        processed_texts, _ = self._load_and_preprocess_files(self.directory, ['.txt'])

        self.create_tokenizer(processed_texts)
        vocab_size = len(self.tokenizer.get_vocab())
        embedding_matrix = self.create_embedding_matrix(vocab_size)

        sequences = []
        for text in processed_texts:
            encoded = self.tokenizer.encode(text)
            for i in range(1, len(encoded)):
                input_seq = encoded[:i]
                sequences.append(input_seq)

        max_sequence_len = max([len(seq) for seq in sequences])
        sequences = np.array(pad_sequences(sequences, maxlen=max_sequence_len, padding='pre'))

        X, y = sequences[:, :-1], sequences[:, -1]
        y = tf.keras.utils.to_categorical(y, num_classes=vocab_size)

        X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)

        return X_train, X_val, y_train, y_val, embedding_matrix, vocab_size, max_sequence_len

    def _load_and_preprocess_files(self, directory, file_formats):
        processed_texts = []
        word_counts = {}

        if not os.path.isdir(directory):
            raise FileNotFoundError(f"B艂膮d: Podana 艣cie偶ka '{directory}' nie jest katalogiem.")

        files = [f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f)) and any(f.endswith(format) for format in file_formats)]
        if not files:
            raise FileNotFoundError("Brak plik贸w w podanym formacie w katalogu.")

        for file in files:
            file_path = os.path.join(directory, file)
            with open(file_path, "r", encoding='utf-8') as f:
                lines = f.readlines()
                if not lines:
                    print(f"Plik {file} jest pusty.")
                    continue

                for line in lines:
                    processed_line = self.preprocess_text(line)
                    processed_texts.append(processed_line)
                    word_count = len(processed_line.split())
                    word_counts[file] = word_counts.get(file, 0) + word_count
                print(f"Przetworzono plik: {file}, liczba s艂贸w: {word_count}")

        if not processed_texts:
            raise ValueError("Brak przetworzonych tekst贸w. Prosz臋 sprawdzi膰 zawarto艣膰 katalogu.")
        else:
            print(f"Liczba przetworzonych tekst贸w: {len(processed_texts)}")

        return processed_texts, word_counts

    def create_and_train_model(self):
        X_train, X_val, y_train, y_val, embedding_matrix, vocab_size, max_sequence_len = self.create_sequences()

        model = Sequential()
        model.add(Embedding(vocab_size, 100, weights=[embedding_matrix], input_length=max_sequence_len - 1, trainable=False))
        model.add(Bidirectional(LSTM(self.lstm_units)))
        model.add(Dropout(self.dropout_rate))
        model.add(Dense(vocab_size, activation='softmax'))

        model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
        model.summary()

        log_dir = os.path.join(KATALOG_LOGOW, self.model_name)
        tensorboard_callback = TensorBoard(log_dir=log_dir)

        early_stopping_callback = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)

        model.fit(X_train, y_train, epochs=self.epochs, validation_data=(X_val, y_val), callbacks=[tensorboard_callback, early_stopping_callback])

        self.model = model
        self.save_model_and_tokenizer()

    def save_model_and_tokenizer(self):
        if not os.path.exists(ZAPISZ_KATALOG):
            os.makedirs(ZAPISZ_KATALOG)
        self.model.save(f'{ZAPISZ_KATALOG}/{self.model_name}.h5')
        with open(f'{ZAPISZ_KATALOG}/{self.model_name}_tokenizer.pkl', 'wb') as handle:
            pickle.dump(self.tokenizer, handle, protocol=pickle.HIGHEST_PROTOCOL)
        print("Model i tokenizer zapisane.")

def main():
    print("Witaj w AI Code Generator!")
    directory = "test"
    model_name = input("Podaj nazw臋 modelu: ")

    processor = TextProcessor(
        directory=directory,
        model_name=model_name,
        input_sequence_length=100,
        output_sequence_length=100,
        epochs=10,
    )

    processor.create_and_train_model()
    print("Model utworzony i wytrenowany pomy艣lnie!")

if __name__ == "__main__":
    main()