from faster_whisper import WhisperModel #import whisper import pandas as pd import gradio as gr import psutil import time import whisperx model = WhisperModel('large-v2', device="cpu", compute_type="float32") #model = whisper.load_model('large-v2') def speech_to_text(mic=None, file=None, lang=None, task='transcribe'): if mic is not None: audio = mic elif file is not None: audio = file else: raise gr.Error("You must either provide a mic recording or a file") print(lang, task) time_start = time.time() segments, info = model.transcribe(audio, task=task, language=lang, beam_size=5) #results = model.transcribe(audio, task=task, language=lang, beam_size=5) #print("Detected language '%s' with probability %f" % (info.language, info.language_probability)) # Decode audio to Text objects = [s._asdict() for s in segments] #objects = results["segments"] print(objects) time_end = time.time() time_diff = time_end - time_start #memory = psutil.virtual_memory() # *Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.* system_info = f""" *Processing time: {time_diff:.5} seconds.* """ df_results = pd.DataFrame(objects) df_results = df_results.drop(columns=['seek', 'tokens', 'avg_logprob']) return df_results, system_info theme=gr.themes.Default().set( color_accent="#e20074", # Buttons button_primary_text_color='white', button_primary_text_color_hover='black', button_primary_background_fill="#e20074", button_primary_background_fill_hover='#c00063', # --telekom-color-primary-hovered button_primary_border_color="#e20074", button_primary_border_color_hover="#c00063", stat_background_fill="#e20074", # Dark Mode button_primary_background_fill_dark="#e20074", button_primary_background_fill_hover_dark='#c00063', # --telekom-color-primary-hovered button_primary_border_color_dark="#e20074", button_primary_border_color_hover_dark="#c00063", stat_background_fill_dark="#e20074", ) with gr.Blocks(title='Whisper Demo', theme=theme) as demo: gr.Markdown('''

Simple Whisper Demo

A simple Whisper demo using local CPU Inference of the largest-v2 Model
''') audio_in = gr.Audio(label="Record", source='microphone', type="filepath") file_in = gr.Audio(label="Upload", source='upload', type="filepath") transcribe_btn = gr.Button("Transcribe audio", variant="primary") translate_btn = gr.Button("Translate to English") trans_df = gr.DataFrame(label="Transcription dataframe", row_count=(0, "dynamic"), max_rows = 10, wrap=True, overflow_row_behaviour='paginate') sys_info = gr.Markdown("") transcribe_btn.click(lambda x, y: speech_to_text(x, y, task='transcribe'), [audio_in, file_in], [trans_df, sys_info] ) translate_btn.click(lambda x, y, z: speech_to_text(x, y, task='translate'), [audio_in, file_in], [trans_df, sys_info]) demo.launch()