pavan2606 commited on
Commit
576b2ba
1 Parent(s): a27bd1e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -54
app.py CHANGED
@@ -1,56 +1,2 @@
1
- # Facial expression classifier
2
- import os
3
- from fastai.vision.all import *
4
- import gradio as gr
5
 
6
- # Emotion
7
- learn_emotion = load_learner('emotions_vgg19.pkl')
8
- learn_emotion_labels = learn_emotion.dls.vocab
9
-
10
-
11
- # Predict
12
- def predict(img):
13
- img = PILImage.create(img)
14
- pred_emotion, pred_emotion_idx, probs_emotion = learn_emotion.predict(img)
15
- predicted_emotion = learn_emotion_labels[pred_emotion_idx]
16
- return predicted_emotion
17
-
18
-
19
- # Gradio
20
- title = "Facial Emotion Detector"
21
-
22
- description = gr.Markdown(
23
- """Ever wondered what a person might be feeling looking at their picture?
24
- Well, now you can! Try this fun app. Just upload a facial image in JPG or
25
- PNG format. You can now see what they might have felt when the picture
26
- was taken.
27
-
28
- **Tip**: Be sure to only include face to get best results. Check some sample images
29
- below for inspiration!""").value
30
-
31
- article = gr.Markdown(
32
- """**DISCLAIMER:** This model does not reveal the actual emotional state of a person. Use and
33
- interpret results at your own risk!.
34
-
35
- **PREMISE:** The idea is to determine an overall emotion of a person
36
- based on the pictures. We are restricting pictures to only include close-up facial
37
- images.
38
-
39
- **DATA:** FER2013 dataset consists of 48x48 pixel grayscale images of faces.Images
40
- are assigned one of the 7 emotions: Angry, Disgust, Fear, Happy, Sad, Surprise, and Neutral.
41
-
42
- """).value
43
-
44
- enable_queue=True
45
-
46
- examples = ['happy1.jpg', 'happy2.jpg', 'angry1.png', 'angry2.jpg', 'neutral1.jpg', 'neutral2.jpg']
47
-
48
- gr.Interface(fn = predict,
49
- inputs = gr.Image( image_mode='L'),
50
- outputs = [gr.Label(label='Emotion')], #gr.Label(),
51
- title = title,
52
- examples = examples,
53
- description = description,
54
- article=article,
55
- allow_flagging='never').launch()
56
 
 
 
 
 
 
1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2