import os from fastai.vision.all import * import gradio as gr import pickle import tempfile from transformers import AutoTokenizer, AutoModelWithLMHead from speechbrain.inference.interfaces import foreign_class # Facial expression classifier # Emotion learn_emotion = load_learner('emotions_vgg.pkl') learn_emotion_labels = learn_emotion.dls.vocab # Predict def predict(img): img = PILImage.create(img) pred_emotion, pred_emotion_idx, probs_emotion = learn_emotion.predict(img) predicted_emotion = learn_emotion_labels[pred_emotion_idx] return predicted_emotion # Gradio title = "Facial Emotion Detector" description = gr.Markdown( """Ever wondered what a person might be feeling just by looking at their picture? Well, get ready to unleash your inner psychic with this hilarious app! Simply upload a close-up facial image in JPG or PNG format, and brace yourself for the laugh riot. Our emotion detector will take one look at their face and reveal what they might have felt when the picture was taken. **Pro Tip**: For best results, make sure only their face is in the picture. It's like reading their mind, but with pixels! ๐Ÿ˜„ And hey, if you're feeling a bit down, this app is sure to turn that frown upside down!""").value article = gr.Markdown( """**DISCLAIMER:** This app isn't powered by actual mind-reading technology! So, take the results with a grain of salt, or better yet, a pinch of laughter! **FUN FACT:** Our facial emotion detector was trained on a bunch of wacky pictures from the FER2013 dataset. It's not perfect, but it'll give you a good chuckle! **DATA JOKES:** Did you know the FER2013 dataset consists of 48x48 pixel grayscale images of faces? We're talking emotions captured in a tiny pixel universe! It's like trying to decipher emotions from a microcosm of hilarity! ๐Ÿง """).value enable_queue=True examples = ["happy1.jpg","happy2.jpeg","netural.jpg","sad.jpeg","surprise.jpeg"] image_mode=gr.Interface(fn = predict, inputs = gr.Image( image_mode='L',label='Image'), outputs = [gr.Label(label='Emotion')], #gr.Label(), title = title, examples = examples, description = description, article=article, allow_flagging='never') # Txet Model # Load tokenizer and model from pickles with open("emotion_tokenizer.pkl", "rb") as f: tokenizer = pickle.load(f) with open("emotion_model.pkl", "rb") as f: model = pickle.load(f) def classify_emotion(text): # Tokenize input text and generate output input_ids = tokenizer.encode("emotion: " + text, return_tensors="pt") output = model.generate(input_ids) output_text = tokenizer.decode(output[0], skip_special_tokens=True) # Classify the emotion into positive, negative, or neutral if output_text in ["joy", "love"]: return "Positive" elif output_text == "surprise": return "Neutral" else: return "Negative" return output_text # Gradio text_title = "Text Emotion Detector" text_description = gr.Markdown( """# Text Emotion Detector: The Mood Meter ๐Ÿ˜„๐Ÿคจ๐Ÿ˜  ## Introduction Welcome to our Text Emotion Detector, also known as The Mood Meter! ๐ŸŽญ This nifty tool helps you decipher the emotional rollercoaster hidden within any piece of text. Whether it's an enthusiastic rave, a stone-cold report, or a fiery rant, we'll break it down into three simple categories: positive, neutral, or negative vibes. Let's have some fun with words! ๐Ÿš€ ## How It Works Our Mood Meter uses top-notch text analysis wizardry to understand the feels behind your words. We've trained it on mountains of text data and equipped it with cutting-edge algorithms to accurately predict whether your text is partying in positivity, chilling in neutrality, or burning with negativity. ๐Ÿ”ฅ Now, who said sentiment analysis couldn't be the highlight of your day? Let's turn those words into a mood-boosting adventure! ๐Ÿš€""").value text_article = gr.Markdown( """ ## Data Our Mood Meter has gobbled up datasets filled with everything from Shakespearean sonnets to social media rants. We've trained it to handle diverse dialects, and writing styles. Because emotions don't stick to a script, and neither do we! ๐ŸŒ ## Disclaimer While The Mood Meter aims to tickle your funny bone while analyzing sentiment, remember that text analysis is an art, not an exact science. Take our results with a sprinkle of salt (or confetti) and always trust your gut (or your funny bone). ๐Ÿ˜‰โœจ """).value enable_queue=True text_examples=["I aced my exam and received praise from my teacher for my hard work.", "I just got a promotion at work, and I'm feeling on top of the world!", "The sudden change in weather surprised everyone, but it didn't cause any inconvenience.", "I accidentally spilled coffee on my laptop, causing it to malfunction.", "I burnt my dinner while trying out a new recipe, and now I have nothing to eat." ] text_model=gr.Interface(fn = classify_emotion, inputs = gr.Textbox( label='Text'), outputs = gr.Textbox(label='Emotion'), title = text_title, examples = text_examples, description = text_description, article=text_article, allow_flagging='never') # Initialize the classifier classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier") def save_uploaded_file(uploaded_file): temp_dir = tempfile.TemporaryDirectory() file_path = os.path.join(temp_dir.name, uploaded_file.name) with open(file_path, "wb") as f: f.write(uploaded_file.getbuffer()) return file_path def emotion(file_path): if file_path: # Classify the file out_prob, score, index, text_lab = classifier.classify_file(file_path) if isinstance(text_lab, list): text_lab = text_lab[0] # Map the original labels to the desired categories emotion_mapping = { 'neu': 'Neutral', 'ang': 'Angry', 'hap': 'Happy', 'sad': 'Sadness' } # Get the corresponding category from the mapping emotion_category = emotion_mapping.get(text_lab, 'Unknown') emotion_category = emotion_mapping.get(text_lab, 'Unknown') # Return the emotion category return emotion_category else: return "Please provide the path to an audio file." audio_model = gr.Interface(fn=emotion, inputs="textbox", outputs="textbox") #Home Page HP_title = "Multimodal Sentiment Analysis: Feel the Emotion in Every Pixel, Word, and Sound!" HP_description = gr.Markdown( """ ## Hey There! ๐ŸŒŸ Welcome to our spectacular project, Multimodal Sentiment Analysis! ๐Ÿš€ Here, we're all about unraveling the emotions tucked away in text, audio, and images. Think of us as your personal emotion whisperers across various platforms! ## Why It's So Darn Cool ๐Ÿ˜Ž Imagine this: understanding emotions unlocks the door to understanding people better. With our project, we're diving headfirst into a pool of sentiments! From heartwarming messages to catchy tunes, and from breathtaking landscapes to hilarious memes, we're decoding it all! ## Explore Emotions Effortlessly with Tabs! ๐Ÿ“‘ Navigate through emotions seamlessly with our nifty tabs: - **Text Emotion Recognition**: Unravel the emotional rollercoaster hidden in every word! - **Image Emotion Recognition**: Peek into the feelings behind every snapshot! - **Audio Emotion Recognition**: Tune in to the vibes of emotions with every sound clip! ## Meet Our Awesome Models ๐ŸŒŸ ### 1. Text Emotion Recognition This model is your go-to buddy for understanding the emotional vibe in written text! Whether it's a love letter or a tweet storm, our Text Emotion Recognition model has got your back, decrypting emotions like a champ! ### 2. Image Emotion Recognition Ever wondered what feelings those grins, frowns, and winks in photos convey? Our Image Emotion Recognition model spills the beans! It's like having a personal mood interpreter for every pic you snap! ### 3. Audio Emotion Recognition Listen up! Our Audio Emotion Recognition model tunes in to the subtle nuances of voice, capturing emotions in every syllable! From giggles to sobs and everything in between, it's your trusty sidekick for decoding the melodies of emotions! ## Ready to Dive In? ๐Ÿš€ Getting started with Multimodal Sentiment Analysis is as easy as pie! Grab our user-friendly APIs and libraries, plug in the models for text, image, and audio emotion recognition, and voilร ! You'll be swimming in the sea of emotions like a pro in no time! ## Meet the Fabulous Team Behind the Magic! ๐Ÿง  Let's give a round of applause to the brilliant minds who made it all happen: - **Pavan**: The wordsmith behind the Text Emotion Recognition model, spinning magic with language and algorithms! - **Abhiram**: The visionary behind the Image Emotion Recognition model, bringing pixels to life with emotion decoding powers! - **Karthik**: The audio maestro shaping the Audio Emotion Recognition model, capturing the symphony of emotions in every sound wave! - **Ganesh**: The glue holding it all together, orchestrating the dance of emotions and teamwork! """).value def greet(name): pass home_page=gr.Interface(fn = greet, inputs = gr.Textbox(label="Hey there! Ready to spice up your title game? Drop your name, and let's turn it into a giggling sensation!" ), outputs = None, description = HP_description, theme='gradio/monochrome', title=HP_title, allow_flagging='never') main_model = gr.TabbedInterface([home_page,text_model, image_mode,audio_model], ["Home Page","Text Emotion Recognition", "Image Emotion Recognition" , "Audio Emotion Recognition"], theme=gr.themes.Default(font="Bahnschrift Light")) main_model.launch()