import os from fastai.vision.all import * import gradio as gr import pickle import tempfile from transformers import AutoTokenizer, AutoModelWithLMHead from speechbrain.inference.interfaces import foreign_class # Facial expression classifier # Emotion learn_emotion = load_learner('emotions_vgg.pkl') learn_emotion_labels = learn_emotion.dls.vocab # Predict def predict(img): img = PILImage.create(img) pred_emotion, pred_emotion_idx, probs_emotion = learn_emotion.predict(img) predicted_emotion = learn_emotion_labels[pred_emotion_idx] return predicted_emotion # Gradio title = "Facial Emotion Detector" description = gr.Markdown( """Ever wondered what a person might be feeling looking at their picture? Well, now you can! Try this fun app. Just upload a facial image in JPG or PNG format. You can now see what they might have felt when the picture was taken. **Tip**: Be sure to only include face to get best results. Check some sample images below for inspiration!""").value article = gr.Markdown( """**DISCLAIMER:** This model does not reveal the actual emotional state of a person. Use and interpret results at your own risk!. **PREMISE:** The idea is to determine an overall emotion of a person based on the pictures. We are restricting pictures to only include close-up facial images. **DATA:** FER2013 dataset consists of 48x48 pixel grayscale images of faces.Images are assigned one of the 7 emotions: Angry, Disgust, Fear, Happy, Sad, Surprise, and Neutral. """).value enable_queue=True examples = ['happy1.jpg', 'happy2.jpg', 'angry1.png', 'angry2.jpg', 'neutral1.jpg', 'neutral2.jpg'] image_mode=gr.Interface(fn = predict, inputs = gr.Image( image_mode='L'), outputs = [gr.Label(label='Emotion')], #gr.Label(), title = title, examples = examples, description = description, article=article, allow_flagging='never') # Txet Model # Load tokenizer and model from pickles with open("emotion_tokenizer.pkl", "rb") as f: tokenizer = pickle.load(f) with open("emotion_model.pkl", "rb") as f: model = pickle.load(f) def classify_emotion(text): # Tokenize input text and generate output input_ids = tokenizer.encode("emotion: " + text, return_tensors="pt") output = model.generate(input_ids) output_text = tokenizer.decode(output[0], skip_special_tokens=True) # Classify the emotion into positive, negative, or neutral if output_text in ["joy", "love"]: return "Positive" elif output_text == "surprise": return "Neutral" else: return "Negative" return output_text text_model = gr.Interface(fn=classify_emotion, inputs="textbox", outputs="textbox") # Initialize the classifier classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier") def save_uploaded_file(uploaded_file): temp_dir = tempfile.TemporaryDirectory() file_path = os.path.join(temp_dir.name, uploaded_file.name) with open(file_path, "wb") as f: f.write(uploaded_file.getbuffer()) return file_path def emotion(file_path): if file_path: # Classify the file out_prob, score, index, text_lab = classifier.classify_file(file_path) if isinstance(text_lab, list): text_lab = text_lab[0] # Map the original labels to the desired categories emotion_mapping = { 'neu': 'Neutral', 'ang': 'Angry', 'hap': 'Happy', 'sad': 'Sadness' } # Get the corresponding category from the mapping emotion_category = emotion_mapping.get(text_lab, 'Unknown') emotion_category = emotion_mapping.get(text_lab, 'Unknown') # Return the emotion category return emotion_category else: return "Please provide the path to an audio file." audio_model = gr.Interface(fn=emotion, inputs="textbox", outputs="textbox") main_model = gr.TabbedInterface([text_model, image_mode,audio_model], ["Text Emotion Recognition", "Image Emotion Recognition" , "Audio Emotion Recognition"]) if _name_ == "_main_": main_model.launch()