File size: 21,884 Bytes
f3566c2
 
dc95170
f3566c2
3ed51fd
 
f3566c2
 
 
 
 
 
 
 
 
 
 
 
dc95170
 
 
f3566c2
 
 
 
 
 
 
 
dc95170
 
 
f3566c2
 
 
 
 
 
 
dc95170
 
 
 
 
 
 
 
 
 
f3566c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc95170
f3566c2
dc95170
f3566c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc95170
 
 
 
f3566c2
 
dc95170
f3566c2
 
 
dc95170
f3566c2
 
 
 
dc95170
f3566c2
 
 
 
dc95170
f3566c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c038666
dc95170
 
f3566c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221fef4
 
f3566c2
221fef4
f3566c2
 
 
 
 
 
221fef4
 
 
 
 
 
f3566c2
221fef4
 
 
 
 
 
 
 
 
 
 
 
 
f3566c2
 
 
 
 
 
 
 
 
221fef4
f3566c2
 
 
221fef4
f3566c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221fef4
 
 
 
 
 
 
 
f3566c2
 
 
 
 
c038666
f3566c2
 
 
 
c038666
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
# For licensing see accompanying LICENSE file.
# Copyright (C) 2024 Apple Inc. All rights reserved.
import spaces
import os

import logging
import shlex
import time
from dataclasses import dataclass
from typing import Optional

import gradio as gr
import simple_parsing
import yaml
from einops import rearrange, repeat

import numpy as np
import torch
from huggingface_hub import snapshot_download
from pathlib import Path
from transformers import T5ForConditionalGeneration
from torchvision.utils import make_grid

from ml_mdm import helpers, reader
from ml_mdm.config import get_arguments, get_model, get_pipeline
from ml_mdm.language_models import factory

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Download destination
models = Path("models")

logging.basicConfig(
    level=getattr(logging, "INFO", None),
    format="[%(asctime)s] {%(pathname)s:%(lineno)d} %(levelname)s - %(message)s",
    datefmt="%H:%M:%S",
)


def download_all_models():
    # Cache language model in the standard location
    _ = T5ForConditionalGeneration.from_pretrained("google/flan-t5-xl")

    # Download the vision models we use in the demo
    snapshot_download("pcuenq/mdm-flickr-64", local_dir=models/"mdm-flickr-64")
    snapshot_download("pcuenq/mdm-flickr-256", local_dir=models/"mdm-flickr-256")
    snapshot_download("pcuenq/mdm-flickr-1024", local_dir=models/"mdm-flickr-1024")


def dividable(n):
    for i in range(int(np.sqrt(n)), 0, -1):
        if n % i == 0:
            break
    return i, n // i


def generate_lm_outputs(device, sample, tokenizer, language_model, args):
    with torch.no_grad():
        lm_outputs, lm_mask = language_model(sample, tokenizer)
        sample["lm_outputs"] = lm_outputs
        sample["lm_mask"] = lm_mask
    return sample


def setup_models(args, device):
    input_channels = 3

    # load the language model
    tokenizer, language_model = factory.create_lm(args, device=device)
    language_model_dim = language_model.embed_dim
    args.unet_config.conditioning_feature_dim = language_model_dim
    denoising_model = get_model(args.model)(
        input_channels, input_channels, args.unet_config
    ).to(device)
    diffusion_model = get_pipeline(args.model)(
        denoising_model, args.diffusion_config
    ).to(device)
    # denoising_model.print_size(args.sample_image_size)
    return tokenizer, language_model, diffusion_model


def plot_logsnr(logsnrs, total_steps):
    import matplotlib.pyplot as plt

    x = 1 - np.arange(len(logsnrs)) / (total_steps - 1)
    plt.plot(x, np.asarray(logsnrs))
    plt.xlabel("timesteps")
    plt.ylabel("LogSNR")
    plt.grid(True)
    plt.xlim(0, 1)
    plt.ylim(-20, 10)
    plt.gca().invert_xaxis()

    # Convert the plot to a numpy array
    fig = plt.gcf()
    fig.canvas.draw()
    image = np.array(fig.canvas.renderer._renderer)
    plt.close()
    return image


@dataclass
class GLOBAL_DATA:
    reader_config: Optional[reader.ReaderConfig] = None
    tokenizer = None
    args = None
    language_model = None
    diffusion_model = None
    override_args = ""
    ckpt_name = ""


global_config = GLOBAL_DATA()


def stop_run():
    return (
        gr.update(value="Run", variant="primary", visible=True),
        gr.update(visible=False),
    )


def get_model_type(config_file):
    with open(config_file, "r") as f:
        d = yaml.safe_load(f)
        return d.get("model", d.get("vision_model", "unet"))


@spaces.GPU
def generate(
    ckpt_name="mdm-flickr-64",
    prompt="a chair",
    input_template="",
    negative_prompt="",
    negative_template="",
    batch_size=20,
    guidance_scale=7.5,
    threshold_function="clip",
    num_inference_steps=250,
    eta=0,
    save_diffusion_path=False,
    show_diffusion_path=False,
    show_xt=False,
    reader_config="",
    seed=10,
    comment="",
    override_args="",
    output_inner=False,
):
    np.random.seed(seed)
    torch.random.manual_seed(seed)

    if len(input_template) > 0:
        prompt = input_template.format(prompt=prompt)
    if len(negative_template) > 0:
        negative_prompt = negative_prompt + negative_template
    print(f"Postive: {prompt} / Negative: {negative_prompt}")

    vision_model_file = models/ckpt_name/"vis_model.pth"
    if not os.path.exists(vision_model_file):
        logging.info(f"Did not generate because {vision_model_file} does not exist")
        return None, None, f"{vision_model_file} does not exist", None, None

    if (
        global_config.ckpt_name != ckpt_name
        or global_config.override_args != override_args
    ):
        # Identify model type
        model_type = get_model_type(models/ckpt_name/"config.yaml")
        # reload the arguments
        args = get_arguments(
            shlex.split(override_args + f" --model {model_type}"),
            mode="demo",
            additional_config_paths=[models/ckpt_name/"config.yaml"],
        )
        helpers.print_args(args)

        # setup model when the parent task changed.
        args.vocab_file = str(models/ckpt_name/args.vocab_file)
        tokenizer, language_model, diffusion_model = setup_models(args, device)
        try:
            other_items = diffusion_model.model.load(vision_model_file)
        except Exception as e:
            logging.error(f"failed to load {vision_model_file}", exc_info=e)
            return None, None, "Loading Model Error", None, None

        # setup global configs
        global_config.batch_num = -1  # reset batch num
        global_config.args = args
        global_config.override_args = override_args
        global_config.tokenizer = tokenizer
        global_config.language_model = language_model
        global_config.diffusion_model = diffusion_model
        global_config.reader_config = args.reader_config
        global_config.ckpt_name = ckpt_name

    else:
        args = global_config.args
        tokenizer = global_config.tokenizer
        language_model = global_config.language_model
        diffusion_model = global_config.diffusion_model

    tokenizer = global_config.tokenizer

    sample = {}
    sample["text"] = [negative_prompt, prompt] if guidance_scale != 1 else [prompt]
    sample["tokens"] = np.asarray(
        reader.process_text(sample["text"], tokenizer, args.reader_config)
    )
    sample = generate_lm_outputs(device, sample, tokenizer, language_model, args)
    assert args.sample_image_size != -1

    # set up thresholding
    from samplers import ThresholdType

    diffusion_model.sampler._config.threshold_function = {
        "clip": ThresholdType.CLIP,
        "dynamic (Imagen)": ThresholdType.DYNAMIC,
        "dynamic (DeepFloyd)": ThresholdType.DYNAMIC_IF,
        "none": ThresholdType.NONE,
    }[threshold_function]

    output_comments = f"{comment}\n"

    bsz = batch_size
    with torch.no_grad():
        if bsz > 1:
            sample["lm_outputs"] = repeat(
                sample["lm_outputs"], "b n d -> (b r) n d", r=bsz
            )
            sample["lm_mask"] = repeat(sample["lm_mask"], "b n -> (b r) n", r=bsz)

        num_samples = bsz
        original, outputs, logsnrs = [], [], []
        logging.info(f"Starting to sample from the model")
        start_time = time.time()
        for step, result in enumerate(
            diffusion_model.sample(
                num_samples,
                sample,
                args.sample_image_size,
                device,
                return_sequence=False,
                num_inference_steps=num_inference_steps,
                ddim_eta=eta,
                guidance_scale=guidance_scale,
                resample_steps=True,
                disable_bar=False,
                yield_output=True,
                yield_full=True,
                output_inner=output_inner,
            )
        ):
            x0, x_t, extra = result
            if step < num_inference_steps:
                g = extra[0][0, 0, 0, 0].cpu()
                logsnrs += [torch.log(g / (1 - g))]
            output = x0 if not show_xt else x_t
            output = torch.clamp(output * 0.5 + 0.5, min=0, max=1).cpu()
            original += [
                output if not output_inner else output[..., -args.sample_image_size :]
            ]

            output = (
                make_grid(output, nrow=dividable(bsz)[0]).permute(1, 2, 0).numpy() * 255
            ).astype(np.uint8)
            outputs += [output]

            output_video_path = None
            if step == num_inference_steps and save_diffusion_path:
                import imageio

                writer = imageio.get_writer("temp_output.mp4", fps=32)
                for output in outputs:
                    writer.append_data(output)
                writer.close()
                output_video_path = "temp_output.mp4"
                if any(diffusion_model.model.vision_model.is_temporal):
                    data = rearrange(
                        original[-1],
                        "(a b) c (n h) (m w) -> (n m) (a h) (b w) c",
                        a=dividable(bsz)[0],
                        n=4,
                        m=4,
                    )
                    data = (data.numpy() * 255).astype(np.uint8)
                    writer = imageio.get_writer("temp_output.mp4", fps=4)
                    for d in data:
                        writer.append_data(d)
                    writer.close()

            if show_diffusion_path or (step == num_inference_steps):
                yield output, plot_logsnr(
                    logsnrs, num_inference_steps
                ), output_comments + f"Step ({step} / {num_inference_steps}) Time ({time.time() - start_time:.4}s)", output_video_path, gr.update(
                    value="Run",
                    variant="primary",
                    visible=(step == num_inference_steps),
                ), gr.update(
                    value="Stop", variant="stop", visible=(step != num_inference_steps)
                )


def main():
    download_all_models()

    # get the language model outputs
    example_texts = open("data/prompts_demo.tsv").readlines()

    css = """
        #config-accordion, #logs-accordion {color: black !important;}
        .dark #config-accordion, .dark #logs-accordion {color: white !important;}
        .stop {background: darkred !important;}
        """

    with gr.Blocks(
        title="Demo of Text-to-Image Diffusion",
        theme="EveryPizza/Cartoony-Gradio-Theme",
        css=css,
    ) as demo:
        with gr.Row(equal_height=True):
            header = """
                    # MLR Text-to-Image Diffusion Model Web Demo

                    This is a demo of model `mdm-flickr-64`. For additional models, please check [our repo](https://github.com/apple/ml-mdm).

                    ### Usage
                    - Select examples below or manually input prompt
                    - Change more advanced settings such as inference steps.
                    """
            gr.Markdown(header)

        with gr.Row(equal_height=False):
            pid = gr.State()
            ckpt_name = gr.Label("mdm-flickr-64", visible=False)
            # with gr.Row():
            prompt_input = gr.Textbox(label="Input prompt")

        with gr.Row(equal_height=False):
            with gr.Column(scale=1):
                with gr.Row(equal_height=False):
                    guidance_scale = gr.Slider(
                        value=7.5,
                        minimum=0.0,
                        maximum=50,
                        step=0.1,
                        label="Guidance scale",
                    )
                with gr.Row(equal_height=False):
                    batch_size = gr.Slider(
                        value=4, minimum=1, maximum=32, step=1, label="Number of images"
                    )

            with gr.Column(scale=1):
                with gr.Row(equal_height=False):
                    with gr.Column(scale=1):
                        save_diffusion_path = gr.Checkbox(
                            value=True, label="Show diffusion path as a video"
                        )
                        show_diffusion_path = gr.Checkbox(
                            value=False, label="Show diffusion progress"
                        )
                        show_xt = gr.Checkbox(value=False, label="Show predicted x_t")
                    with gr.Column(scale=1):
                        output_inner = gr.Checkbox(
                            value=False,
                            label="Output inner UNet (High-res models Only)",
                            visible=False,
                        )

        with gr.Row(equal_height=False):
            comment = gr.Textbox(value="", label="Comments to the model (optional)")

        with gr.Row(equal_height=False):
            with gr.Column(scale=2):
                output_image = gr.Image(value=None, label="Output image")
            with gr.Column(scale=2):
                output_video = gr.Video(value=None, label="Diffusion Path")

        with gr.Row(equal_height=False):
            with gr.Column(scale=2):
                with gr.Accordion(
                    "Advanced settings", open=False, elem_id="config-accordion"
                ):
                    input_template = gr.Dropdown(
                        [
                            "",
                            "breathtaking {prompt}. award-winning, professional, highly detailed",
                            "anime artwork {prompt}. anime style, key visual, vibrant, studio anime, highly detailed",
                            "concept art {prompt}. digital artwork, illustrative, painterly, matte painting, highly detailed",
                            "ethereal fantasy concept art of {prompt}. magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
                            "cinematic photo {prompt}. 35mm photograph, film, bokeh, professional, 4k, highly detailed",
                            "cinematic film still {prompt}. shallow depth of field, vignette, highly detailed, high budget Hollywood movie, bokeh, cinemascope, moody",
                            "analog film photo {prompt}. faded film, desaturated, 35mm photo, grainy, vignette, vintage, Kodachrome, Lomography, stained, highly detailed, found footage",
                            "vaporwave synthwave style {prompt}. cyberpunk, neon, vibes, stunningly beautiful, crisp, detailed, sleek, ultramodern, high contrast, cinematic composition",
                            "isometric style {prompt}. vibrant, beautiful, crisp, detailed, ultra detailed, intricate",
                            "low-poly style {prompt}. ambient occlusion, low-poly game art, polygon mesh, jagged, blocky, wireframe edges, centered composition",
                            "claymation style {prompt}. sculpture, clay art, centered composition, play-doh",
                            "professional 3d model {prompt}. octane render, highly detailed, volumetric, dramatic lighting",
                            "origami style {prompt}. paper art, pleated paper, folded, origami art, pleats, cut and fold, centered composition",
                            "pixel-art {prompt}. low-res, blocky, pixel art style, 16-bit graphics",
                        ],
                        value="",
                        label="Positive Template (by default, not use)",
                    )
                    with gr.Row(equal_height=False):
                        with gr.Column(scale=1):
                            negative_prompt_input = gr.Textbox(
                                value="", label="Negative prompt"
                            )
                        with gr.Column(scale=1):
                            negative_template = gr.Dropdown(
                                [
                                    "",
                                    "anime, cartoon, graphic, text, painting, crayon, graphite, abstract glitch, blurry",
                                    "photo, deformed, black and white, realism, disfigured, low contrast",
                                    "photo, photorealistic, realism, ugly",
                                    "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
                                    "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
                                    "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
                                    "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
                                    "illustration, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
                                    "deformed, mutated, ugly, disfigured, blur, blurry, noise, noisy, realistic, photographic",
                                    "noisy, sloppy, messy, grainy, highly detailed, ultra textured, photo",
                                    "ugly, deformed, noisy, low poly, blurry, painting",
                                ],
                                value="",
                                label="Negative Template (by default, not use)",
                            )

                    with gr.Row(equal_height=False):
                        with gr.Column(scale=1):
                            threshold_function = gr.Dropdown(
                                [
                                    "clip",
                                    "dynamic (Imagen)",
                                    "dynamic (DeepFloyd)",
                                    "none",
                                ],
                                value="dynamic (DeepFloyd)",
                                label="Thresholding",
                            )
                        with gr.Column(scale=1):
                            reader_config = gr.Dropdown(
                                ["configs/datasets/reader_config.yaml"],
                                value="configs/datasets/reader_config.yaml",
                                label="Reader Config",
                            )
                    with gr.Row(equal_height=False):
                        with gr.Column(scale=1):
                            num_inference_steps = gr.Slider(
                                value=50,
                                minimum=1,
                                maximum=2000,
                                step=1,
                                label="# of steps",
                            )
                        with gr.Column(scale=1):
                            eta = gr.Slider(
                                value=0,
                                minimum=0,
                                maximum=1,
                                step=0.05,
                                label="DDIM eta",
                            )
                    seed = gr.Slider(
                        value=137,
                        minimum=0,
                        maximum=2147483647,
                        step=1,
                        label="Random seed",
                    )
                    override_args = gr.Textbox(
                        value="--reader_config.max_token_length 128 --reader_config.max_caption_length 512",
                        label="Override model arguments (optional)",
                    )

                run_btn = gr.Button(value="Run", variant="primary")
                stop_btn = gr.Button(value="Stop", variant="stop", visible=False)

            with gr.Column(scale=2):
                with gr.Accordion(
                    "Addditional outputs", open=False, elem_id="output-accordion"
                ):
                    with gr.Row(equal_height=True):
                        output_text = gr.Textbox(value=None, label="System output")
                    with gr.Row(equal_height=True):
                        logsnr_fig = gr.Image(value=None, label="Noise schedule")

        run_event = run_btn.click(
            fn=generate,
            inputs=[
                ckpt_name,
                prompt_input,
                input_template,
                negative_prompt_input,
                negative_template,
                batch_size,
                guidance_scale,
                threshold_function,
                num_inference_steps,
                eta,
                save_diffusion_path,
                show_diffusion_path,
                show_xt,
                reader_config,
                seed,
                comment,
                override_args,
                output_inner,
            ],
            outputs=[
                output_image,
                logsnr_fig,
                output_text,
                output_video,
                run_btn,
                stop_btn,
            ],
        )

        stop_btn.click(
            fn=stop_run,
            outputs=[run_btn, stop_btn],
            cancels=[run_event],
            queue=False,
        )
        # example0 = gr.Examples(
        #     [
        #         ["mdm-flickr-64", 64, 50, 0],
        #         ["mdm-flickr-256", 16, 100, 0],
        #         ["mdm-flickr-1024", 4, 250, 1],
        #     ],
        #     inputs=[ckpt_name, batch_size, num_inference_steps, eta],
        # )
        example1 = gr.Examples(
            examples=[[t.strip()] for t in example_texts],
            inputs=[prompt_input],
        )

        launch_args = {}
        demo.queue(default_concurrency_limit=1).launch(**launch_args)


if __name__ == "__main__":
    main()