Ayushnangia
commited on
Commit
•
ea5f05b
1
Parent(s):
b8b3256
updated with spell check and grammar
Browse files
app.py
CHANGED
@@ -1,58 +1,89 @@
|
|
1 |
import os
|
2 |
-
os.environ['USE_TORCH'] = '1'
|
3 |
-
|
4 |
from doctr.io import DocumentFile
|
5 |
from doctr.models import ocr_predictor
|
6 |
import gradio as gr
|
7 |
from PIL import Image
|
8 |
-
import
|
9 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
description="Upload an image to get the OCR results !"
|
15 |
|
16 |
-
def greet(img):
|
17 |
img.save("out.jpg")
|
18 |
doc = DocumentFile.from_images("out.jpg")
|
19 |
-
output=predictor(doc)
|
20 |
|
21 |
-
|
22 |
-
parser = HocrParser()
|
23 |
-
|
24 |
-
res=""
|
25 |
for obj in output.pages:
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
_output_name = "RESULT_OCR.txt"
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
description=description,
|
55 |
-
examples=[["Examples/Book.png"],["Examples/News.png"],["Examples/Manuscript.jpg"],["Examples/Files.jpg"]]
|
56 |
-
)
|
57 |
-
|
58 |
-
demo.launch(debug=True)
|
|
|
1 |
import os
|
|
|
|
|
2 |
from doctr.io import DocumentFile
|
3 |
from doctr.models import ocr_predictor
|
4 |
import gradio as gr
|
5 |
from PIL import Image
|
6 |
+
from happytransformer import HappyTextToText, TTSettings
|
7 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
8 |
+
import re
|
9 |
+
|
10 |
+
# OCR Predictor initialization
|
11 |
+
predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', reco_arch='crnn_vgg16_bn', pretrained=True)
|
12 |
+
|
13 |
+
# Grammar Correction Model initialization
|
14 |
+
happy_tt = HappyTextToText("T5", "vennify/t5-base-grammar-correction")
|
15 |
+
grammar_args = TTSettings(num_beams=5, min_length=1)
|
16 |
+
|
17 |
+
# Spell Check Model initialization
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained("Bhuvana/t5-base-spellchecker", use_fast=False)
|
19 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("Bhuvana/t5-base-spellchecker")
|
20 |
+
|
21 |
+
def correct_spell(inputs):
|
22 |
+
input_ids = tokenizer.encode(inputs, return_tensors='pt')
|
23 |
+
sample_output = model.generate(
|
24 |
+
input_ids,
|
25 |
+
do_sample=True,
|
26 |
+
max_length=512,
|
27 |
+
top_p=0.99,
|
28 |
+
num_return_sequences=1
|
29 |
+
)
|
30 |
+
res = tokenizer.decode(sample_output[0], skip_special_tokens=True)
|
31 |
+
return res
|
32 |
+
|
33 |
+
def process_text_in_chunks(text, process_function, max_chunk_size=256):
|
34 |
+
# Split text into sentences
|
35 |
+
sentences = re.split(r'(?<=[.!?])\s+', text)
|
36 |
+
processed_text = ""
|
37 |
|
38 |
+
for sentence in sentences:
|
39 |
+
# Further split long sentences into smaller chunks
|
40 |
+
chunks = [sentence[i:i + max_chunk_size] for i in range(0, len(sentence), max_chunk_size)]
|
41 |
+
for chunk in chunks:
|
42 |
+
processed_text += process_function(chunk)
|
43 |
+
processed_text += " " # Add space after each processed sentence
|
44 |
|
45 |
+
return processed_text.strip()
|
|
|
46 |
|
47 |
+
def greet(img, apply_grammar_correction, apply_spell_check):
|
48 |
img.save("out.jpg")
|
49 |
doc = DocumentFile.from_images("out.jpg")
|
50 |
+
output = predictor(doc)
|
51 |
|
52 |
+
res = ""
|
|
|
|
|
|
|
53 |
for obj in output.pages:
|
54 |
+
for obj1 in obj.blocks:
|
55 |
+
for obj2 in obj1.lines:
|
56 |
+
for obj3 in obj2.words:
|
57 |
+
res += " " + obj3.value
|
58 |
+
res += "\n"
|
59 |
+
res += "\n"
|
60 |
+
|
61 |
+
# Process in chunks for grammar correction
|
62 |
+
if apply_grammar_correction:
|
63 |
+
res = process_text_in_chunks(res, lambda x: happy_tt.generate_text("grammar: " + x, args=grammar_args).text)
|
64 |
+
|
65 |
+
# Process in chunks for spell check
|
66 |
+
if apply_spell_check:
|
67 |
+
res = process_text_in_chunks(res, correct_spell)
|
68 |
|
69 |
_output_name = "RESULT_OCR.txt"
|
70 |
+
open(_output_name, 'w').write(res)
|
71 |
+
return res, _output_name
|
72 |
+
|
73 |
+
# Gradio Interface
|
74 |
+
title = "DocTR OCR with Grammar and Spell Check"
|
75 |
+
description = "Upload an image to get the OCR results. Optionally, apply grammar and spell check."
|
76 |
+
|
77 |
+
demo = gr.Interface(
|
78 |
+
fn=greet,
|
79 |
+
inputs=[
|
80 |
+
gr.Image(type="pil"),
|
81 |
+
gr.Checkbox(label="Apply Grammar Correction"),
|
82 |
+
gr.Checkbox(label="Apply Spell Check")
|
83 |
+
],
|
84 |
+
outputs=["text", "file"],
|
85 |
+
title=title,
|
86 |
+
description=description,
|
87 |
+
)
|
88 |
+
|
89 |
+
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
|