File size: 18,432 Bytes
7648567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
import glob
import os
import numpy as np
import torch
import torch.nn.functional as F
import trimesh
import scipy.sparse as sp
import collections


def rodrigues(theta):
    """Convert axis-angle representation to rotation matrix.

    Args:

        theta: size = [B, 3]

    Returns:

        Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]

    """
    l1norm = torch.norm(theta + 1e-8, p=2, dim=1)
    angle = torch.unsqueeze(l1norm, -1)
    normalized = torch.div(theta, angle)
    angle = angle * 0.5
    v_cos = torch.cos(angle)
    v_sin = torch.sin(angle)
    quat = torch.cat([v_cos, v_sin * normalized], dim=1)
    return quat2mat(quat)


def quat2mat(quat):
    """Convert quaternion coefficients to rotation matrix.

    Args:

        quat: size = [B, 4] 4 <===>(w, x, y, z)

    Returns:

        Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]

    """
    norm_quat = quat
    norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True)
    w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3]

    B = quat.size(0)

    w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
    wx, wy, wz = w * x, w * y, w * z
    xy, xz, yz = x * y, x * z, y * z

    rotMat = torch.stack([w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz,
                          2 * wz + 2 * xy, w2 - x2 + y2 - z2, 2 * yz - 2 * wx,
                          2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 - x2 - y2 + z2], dim=1).view(B, 3, 3)
    return rotMat


def inv_4x4(mats):
    """Calculate the inverse of homogeneous transformations

    :param mats: [B, 4, 4]

    :return:

    """
    Rs = mats[:, :3, :3]
    ts = mats[:, :3, 3:]
    # R_invs = torch.transpose(Rs, 1, 2)
    R_invs = torch.inverse(Rs)
    t_invs = -torch.matmul(R_invs, ts)
    Rt_invs = torch.cat([R_invs, t_invs], dim=-1)   # [B, 3, 4]

    device = R_invs.device
    pad_row = torch.FloatTensor([0, 0, 0, 1]).to(device).view(1, 1, 4).expand(Rs.shape[0], -1, -1)
    mat_invs = torch.cat([Rt_invs, pad_row], dim=1)
    return mat_invs


def as_mesh(scene_or_mesh):
    """

    Convert a possible scene to a mesh.



    If conversion occurs, the returned mesh has only vertex and face data.

    """
    if isinstance(scene_or_mesh, trimesh.Scene):
        if len(scene_or_mesh.geometry) == 0:
            mesh = None  # empty scene
        else:
            # we lose texture information here
            mesh = trimesh.util.concatenate(
                tuple(trimesh.Trimesh(vertices=g.vertices, faces=g.faces)
                    for g in scene_or_mesh.geometry.values()))
    else:
        assert(isinstance(scene_or_mesh, trimesh.Trimesh))
        mesh = scene_or_mesh
    return mesh


def get_edge_unique(faces):
    """

    Parameters

    ------------

    faces: n x 3 int array

      Should be from a watertight mesh without degenerated triangles and intersection

    """
    faces = np.asanyarray(faces)

    # each face has three edges
    edges = faces[:, [0, 1, 1, 2, 2, 0]].reshape((-1, 2))
    flags = edges[:, 0] < edges[:, 1]
    edges = edges[flags]
    return edges


def get_neighbors(edges):
    neighbors = collections.defaultdict(set)
    [(neighbors[edge[0]].add(edge[1]),
      neighbors[edge[1]].add(edge[0]))
     for edge in edges]

    max_index = edges.max() + 1
    array = [list(neighbors[i]) for i in range(max_index)]

    return array


def construct_degree_matrix(vnum, faces):
    row = col = list(range(vnum))
    value = [0] * vnum
    es = get_edge_unique(faces)
    for e in es:
        if e[0] < e[1]:
            value[e[0]] += 1
            value[e[0]] += 1

    dm = sp.coo_matrix((value, (row, col)), shape=(vnum, vnum), dtype=np.float32)
    return dm


def construct_neighborhood_matrix(vnum, faces):
    row = list()
    col = list()
    value = list()
    es = get_edge_unique(faces)
    for e in es:
        if e[0] < e[1]:
            row.append(e[0])
            col.append(e[1])
            value.append(1)
            row.append(e[1])
            col.append(e[0])
            value.append(1)

    nm = sp.coo_matrix((value, (row, col)), shape=(vnum, vnum), dtype=np.float32)
    return nm


def construct_laplacian_matrix(vnum, faces, normalized=False):
    edges = get_edge_unique(faces)
    neighbors = get_neighbors(edges)

    col = np.concatenate(neighbors)
    row = np.concatenate([[i] * len(n)
                          for i, n in enumerate(neighbors)])
    col = np.concatenate([col, np.arange(0, vnum)])
    row = np.concatenate([row, np.arange(0, vnum)])

    if normalized:
        data = [[1.0 / len(n)] * len(n) for n in neighbors]
        data += [[-1.0] * vnum]
    else:
        data = [[1.0] * len(n) for n in neighbors]
        data += [[-len(n) for n in neighbors]]

    data = np.concatenate(data)
    # create the sparse matrix
    matrix = sp.coo_matrix((data, (row, col)), shape=[vnum] * 2)
    return matrix


def rotationx_4x4(theta):
    return np.array([
        [1.0, 0.0, 0.0, 0.0],
        [0.0, np.cos(theta / 180 * np.pi), np.sin(theta / 180 * np.pi), 0.0],
        [0.0, -np.sin(theta / 180 * np.pi), np.cos(theta / 180 * np.pi), 0.0],
        [0.0, 0.0, 0.0, 1.0]
    ])


def rotationy_4x4(theta):
    return np.array([
        [np.cos(theta / 180 * np.pi), 0.0, np.sin(theta / 180 * np.pi), 0.0],
        [0.0, 1.0, 0.0, 0.0],
        [-np.sin(theta / 180 * np.pi), 0.0, np.cos(theta / 180 * np.pi), 0.0],
        [0.0, 0.0, 0.0, 1.0]
    ])


def rotationz_4x4(theta):
    return np.array([
        [np.cos(theta / 180 * np.pi), np.sin(theta / 180 * np.pi), 0.0, 0.0],
        [-np.sin(theta / 180 * np.pi), np.cos(theta / 180 * np.pi), 0.0, 0.0],
        [0.0, 0.0, 1.0, 0.0],
        [0.0, 0.0, 0.0, 1.0]
    ])


def rotationx_3x3(theta):
    return np.array([
        [1.0, 0.0, 0.0],
        [0.0, np.cos(theta / 180 * np.pi), np.sin(theta / 180 * np.pi)],
        [0.0, -np.sin(theta / 180 * np.pi), np.cos(theta / 180 * np.pi)],
    ])


def rotationy_3x3(theta):
    return np.array([
        [np.cos(theta / 180 * np.pi), 0.0, np.sin(theta / 180 * np.pi)],
        [0.0, 1.0, 0.0],
        [-np.sin(theta / 180 * np.pi), 0.0, np.cos(theta / 180 * np.pi)],
    ])


def rotationz_3x3(theta):
    return np.array([
        [np.cos(theta / 180 * np.pi), np.sin(theta / 180 * np.pi), 0.0],
        [-np.sin(theta / 180 * np.pi), np.cos(theta / 180 * np.pi), 0.0],
        [0.0, 0.0, 1.0],
    ])


def generate_point_grids(vol_res):
    x_coords = np.array(range(0, vol_res), dtype=np.float32)
    y_coords = np.array(range(0, vol_res), dtype=np.float32)
    z_coords = np.array(range(0, vol_res), dtype=np.float32)

    yv, xv, zv = np.meshgrid(x_coords, y_coords, z_coords)
    xv = np.reshape(xv, (-1, 1))
    yv = np.reshape(yv, (-1, 1))
    zv = np.reshape(zv, (-1, 1))
    pts = np.concatenate([xv, yv, zv], axis=-1)
    pts = pts.astype(np.float32)
    return pts


def infer_occupancy_value_grid_octree(test_res, pts, query_fn, init_res=64, ignore_thres=0.05):
    pts = np.reshape(pts, (test_res, test_res, test_res, 3))

    pts_ov = np.zeros([test_res, test_res, test_res])
    dirty = np.ones_like(pts_ov, dtype=np.bool)
    grid_mask = np.zeros_like(pts_ov, dtype=np.bool)

    reso = test_res // init_res
    while reso > 0:
        grid_mask[0:test_res:reso, 0:test_res:reso, 0:test_res:reso] = True
        test_mask = np.logical_and(grid_mask, dirty)

        pts_ = pts[test_mask]
        pts_ov[test_mask] = np.reshape(query_fn(pts_), pts_ov[test_mask].shape)

        if reso <= 1:
            break
        for x in range(0, test_res - reso, reso):
            for y in range(0, test_res - reso, reso):
                for z in range(0, test_res - reso, reso):
                    # if center marked, return
                    if not dirty[x + reso // 2, y + reso // 2, z + reso // 2]:
                        continue
                    v0 = pts_ov[x, y, z]
                    v1 = pts_ov[x, y, z + reso]
                    v2 = pts_ov[x, y + reso, z]
                    v3 = pts_ov[x, y + reso, z + reso]
                    v4 = pts_ov[x + reso, y, z]
                    v5 = pts_ov[x + reso, y, z + reso]
                    v6 = pts_ov[x + reso, y + reso, z]
                    v7 = pts_ov[x + reso, y + reso, z + reso]
                    v = np.array([v0, v1, v2, v3, v4, v5, v6, v7])
                    v_min = np.min(v)
                    v_max = np.max(v)
                    # this cell is all the same
                    if (v_max - v_min) < ignore_thres:
                        pts_ov[x:x + reso, y:y + reso, z:z + reso] = (v_max + v_min) / 2
                        dirty[x:x + reso, y:y + reso, z:z + reso] = False
        reso //= 2
    return pts_ov


def batch_rod2quat(rot_vecs):
    batch_size = rot_vecs.shape[0]

    angle = torch.norm(rot_vecs + 1e-16, dim=1, keepdim=True)
    rot_dir = rot_vecs / angle

    cos = torch.cos(angle / 2)
    sin = torch.sin(angle / 2)

    # Bx1 arrays
    rx, ry, rz = torch.split(rot_dir, 1, dim=1)

    qx = rx * sin
    qy = ry * sin
    qz = rz * sin
    qw = cos-1.0

    return torch.cat([qx,qy,qz,qw], dim=1)


def batch_quat2matrix(rvec):
    '''

    args:

        rvec: (B, N, 4)

    '''
    B, N, _ = rvec.size()

    theta = torch.sqrt(1e-5 + torch.sum(rvec ** 2, dim=2))
    rvec = rvec / theta[:, :, None]
    return torch.stack((
        1. - 2. * rvec[:, :, 1] ** 2 - 2. * rvec[:, :, 2] ** 2,
        2. * (rvec[:, :, 0] * rvec[:, :, 1] - rvec[:, :, 2] * rvec[:, :, 3]),
        2. * (rvec[:, :, 0] * rvec[:, :, 2] + rvec[:, :, 1] * rvec[:, :, 3]),

        2. * (rvec[:, :, 0] * rvec[:, :, 1] + rvec[:, :, 2] * rvec[:, :, 3]),
        1. - 2. * rvec[:, :, 0] ** 2 - 2. * rvec[:, :, 2] ** 2,
        2. * (rvec[:, :, 1] * rvec[:, :, 2] - rvec[:, :, 0] * rvec[:, :, 3]),

        2. * (rvec[:, :, 0] * rvec[:, :, 2] - rvec[:, :, 1] * rvec[:, :, 3]),
        2. * (rvec[:, :, 0] * rvec[:, :, 3] + rvec[:, :, 1] * rvec[:, :, 2]),
        1. - 2. * rvec[:, :, 0] ** 2 - 2. * rvec[:, :, 1] ** 2
        ), dim=2).view(B, N, 3, 3)


def get_posemap(map_type, n_joints, parents, n_traverse=1, normalize=True):
    pose_map = torch.zeros(n_joints,n_joints-1)
    if map_type == 'parent':
        for i in range(n_joints-1):
            pose_map[i+1,i] = 1.0
    elif map_type == 'children':
        for i in range(n_joints-1):
            parent = parents[i+1]
            for j in range(n_traverse):
                pose_map[parent, i] += 1.0
                if parent == 0:
                    break
                parent = parents[parent]
        if normalize:
            pose_map /= pose_map.sum(0,keepdim=True)+1e-16
    elif map_type == 'both':
        for i in range(n_joints-1):
            pose_map[i+1,i] += 1.0
            parent = parents[i+1]
            for j in range(n_traverse):
                pose_map[parent, i] += 1.0
                if parent == 0:
                    break
                parent = parents[parent]
        if normalize:
            pose_map /= pose_map.sum(0,keepdim=True)+1e-16
    else:
        raise NotImplementedError('unsupported pose map type [%s]' % map_type)
    pose_map = torch.cat([torch.zeros(n_joints, 1), pose_map], dim=1)
    return pose_map


def vertices_to_triangles(vertices, faces):
    """

    :param vertices: [batch size, number of vertices, 3]

    :param faces: [batch size, number of faces, 3)

    :return: [batch size, number of faces, 3, 3]

    """
    assert (vertices.ndimension() == 3)
    assert (faces.ndimension() == 3)
    assert (vertices.shape[0] == faces.shape[0])
    assert (vertices.shape[2] == 3)
    assert (faces.shape[2] == 3)

    bs, nv = vertices.shape[:2]
    bs, nf = faces.shape[:2]
    device = vertices.device
    faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None]
    vertices = vertices.reshape((bs * nv, 3))
    # pytorch only supports long and byte tensors for indexing
    return vertices[faces.long()]


def calc_face_normals(vertices, faces):
    assert len(vertices.shape) == 3
    assert len(faces.shape) == 2
    if isinstance(faces, np.ndarray):
        faces = torch.from_numpy(faces.astype(np.int64)).to(vertices.device)

    batch_size, pt_num = vertices.shape[:2]
    face_num = faces.shape[0]

    triangles = vertices_to_triangles(vertices, faces.unsqueeze(0).expand(batch_size, -1, -1))
    triangles = triangles.reshape((batch_size * face_num, 3, 3))
    v10 = triangles[:, 0] - triangles[:, 1]
    v12 = triangles[:, 2] - triangles[:, 1]
    # pytorch normalize divides by max(norm, eps) instead of (norm+eps) in chainer
    normals = F.normalize(torch.cross(v10, v12), eps=1e-5)
    normals = normals.reshape((batch_size, face_num, 3))

    return normals


def calc_vert_normals(vertices, faces):
    """

    vertices: [B, N, 3]

    faces: [F, 3]

    """
    normals = torch.zeros_like(vertices)
    v0s = torch.index_select(vertices, dim=1, index=faces[:, 0])    # [B, F, 3]
    v1s = torch.index_select(vertices, dim=1, index=faces[:, 1])
    v2s = torch.index_select(vertices, dim=1, index=faces[:, 2])
    normals = torch.index_add(normals, dim=1, index=faces[:, 1], source=torch.cross(v2s-v1s, v0s-v1s, dim=-1))
    normals = torch.index_add(normals, dim=1, index=faces[:, 2], source=torch.cross(v0s-v2s, v1s-v2s, dim=-1))
    normals = torch.index_add(normals, dim=1, index=faces[:, 0], source=torch.cross(v1s-v0s, v2s-v0s, dim=-1))
    normals = F.normalize(normals, dim=-1)
    return normals


def calc_vert_normals_numpy(vertices, faces):
    assert len(vertices.shape) == 2
    assert len(faces.shape) == 2

    nmls = np.zeros_like(vertices)
    fv0 = vertices[faces[:, 0]]
    fv1 = vertices[faces[:, 1]]
    fv2 = vertices[faces[:, 2]]
    face_nmls = np.cross(fv1-fv0, fv2-fv0, axis=-1)
    face_nmls = face_nmls / (np.linalg.norm(face_nmls, axis=-1, keepdims=True) + 1e-20)
    for f, fn in zip(faces, face_nmls):
        nmls[f] += fn
    nmls = nmls / (np.linalg.norm(nmls, axis=-1, keepdims=True) + 1e-20)
    return nmls


def glUV2torchUV(gl_uv):
    torch_uv = torch.stack([
        gl_uv[..., 0]*2.0-1.0,
        gl_uv[..., 1]*-2.0+1.0
    ], dim=-1)
    return torch_uv


def normalize_vert_bbox(verts, dim=-1, per_axis=False):
    bbox_min = torch.min(verts, dim=dim, keepdim=True)[0]
    bbox_max = torch.max(verts, dim=dim, keepdim=True)[0]
    verts = verts - 0.5 * (bbox_max + bbox_min)
    if per_axis:
        verts = 2 * verts / (bbox_max - bbox_min)
    else:
        verts = 2 * verts / torch.max(bbox_max-bbox_min, dim=dim, keepdim=True)[0]
    return verts


def upsample_sdf_volume(sdf, upsample_factor):
    assert sdf.shape[0] == sdf.shape[1] == sdf.shape[2]
    coarse_resolution = sdf.shape[0]
    fine_resolution = coarse_resolution * upsample_factor

    sdf_interp_buffer = np.zeros([2, 2, 2, coarse_resolution, coarse_resolution, coarse_resolution],
                                 dtype=np.float32)
    dx_list = [0, 1, 0, 1, 0, 1, 0, 1]
    dy_list = [0, 0, 1, 1, 0, 0, 1, 1]
    dz_list = [0, 0, 0, 0, 1, 1, 1, 1]
    for dx, dy, dz in zip(dx_list, dy_list, dz_list):
        sdf_interp_buffer[dx, dy, dz, :, :, :] = np.roll(sdf, (-dx, -dy, -dz), axis=(0, 1, 2))

    sdf_fine = np.zeros([fine_resolution, fine_resolution, fine_resolution], dtype=np.float32)
    for dx in range(upsample_factor):
        for dy in range(upsample_factor):
            for dz in range(upsample_factor):
                wx = (1.0 - dx / upsample_factor)
                wy = (1.0 - dy / upsample_factor)
                wz = (1.0 - dz / upsample_factor)
                sdf_fine[dx::upsample_factor, dy::upsample_factor, dz::upsample_factor] += \
                    wx * wy * wz * sdf_interp_buffer[0, 0, 0]
                sdf_fine[dx::upsample_factor, dy::upsample_factor, dz::upsample_factor] += \
                    (1.0 - wx) * wy * wz * sdf_interp_buffer[1, 0, 0]
                sdf_fine[dx::upsample_factor, dy::upsample_factor, dz::upsample_factor] += \
                    wx * (1.0 - wy) * wz * sdf_interp_buffer[0, 1, 0]
                sdf_fine[dx::upsample_factor, dy::upsample_factor, dz::upsample_factor] += \
                    (1.0 - wx) * (1.0 - wy) * wz * sdf_interp_buffer[1, 1, 0]
                sdf_fine[dx::upsample_factor, dy::upsample_factor, dz::upsample_factor] += \
                    wx * wy * (1.0 - wz) * sdf_interp_buffer[0, 0, 1]
                sdf_fine[dx::upsample_factor, dy::upsample_factor, dz::upsample_factor] += \
                    (1.0 - wx) * wy * (1.0 - wz) * sdf_interp_buffer[1, 0, 1]
                sdf_fine[dx::upsample_factor, dy::upsample_factor, dz::upsample_factor] += \
                    wx * (1.0 - wy) * (1.0 - wz) * sdf_interp_buffer[0, 1, 1]
                sdf_fine[dx::upsample_factor, dy::upsample_factor, dz::upsample_factor] += \
                    (1.0 - wx) * (1.0 - wy) * (1.0 - wz) * sdf_interp_buffer[1, 1, 1]
    return sdf_fine


def search_nearest_correspondence(src, tgt):
    tgt_idx = np.zeros(len(src), dtype=np.int32)
    tgt_dist = np.zeros(len(src), dtype=np.float32)
    for i in range(len(src)):
        dist = np.linalg.norm(tgt - src[i:(i+1)], axis=1, keepdims=False)
        tgt_idx[i] = np.argmin(dist)
        tgt_dist[i] = dist[tgt_idx[i]]
    return tgt_idx, tgt_dist


def estimate_rigid_transformation(src, tgt):
    src = src.transpose()
    tgt = tgt.transpose()
    mu1, mu2 = src.mean(axis=1, keepdims=True), tgt.mean(axis=1, keepdims=True)
    X1, X2 = src - mu1, tgt - mu2

    K = X1.dot(X2.T)
    U, s, Vh = np.linalg.svd(K)
    V = Vh.T
    Z = np.eye(U.shape[0])
    Z[-1, -1] *= np.sign(np.linalg.det(U.dot(V.T)))
    R = V.dot(Z.dot(U.T))
    t = mu2 - R.dot(mu1)

    # orient, _ = cv.Rodrigues(R)
    # orient = orient.reshape([-1])
    # t = t.reshape([-1])
    # return orient, t

    transf = np.eye(4, dtype=np.float32)
    transf[:3, :3] = R
    transf[:3, 3] = t.reshape([-1])
    return transf