File size: 20,385 Bytes
7648567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

from typing import Optional, Union

import torch
import torch.nn.functional as F

Device = Union[str, torch.device]

"""

The transformation matrices returned from the functions in this file assume

the points on which the transformation will be applied are column vectors.

i.e. the R matrix is structured as



    R = [

            [Rxx, Rxy, Rxz],

            [Ryx, Ryy, Ryz],

            [Rzx, Rzy, Rzz],

        ]  # (3, 3)



This matrix can be applied to column vectors by post multiplication

by the points e.g.



    points = [[0], [1], [2]]  # (3 x 1) xyz coordinates of a point

    transformed_points = R * points



To apply the same matrix to points which are row vectors, the R matrix

can be transposed and pre multiplied by the points:



e.g.

    points = [[0, 1, 2]]  # (1 x 3) xyz coordinates of a point

    transformed_points = points * R.transpose(1, 0)

"""


def quaternion_to_matrix(quaternions: torch.Tensor) -> torch.Tensor:
    """

    Convert rotations given as quaternions to rotation matrices.



    Args:

        quaternions: quaternions with real part first,

            as tensor of shape (..., 4).



    Returns:

        Rotation matrices as tensor of shape (..., 3, 3).

    """
    r, i, j, k = torch.unbind(quaternions, -1)
    two_s = 2.0 / (quaternions * quaternions).sum(-1)

    o = torch.stack(
        (
            1 - two_s * (j * j + k * k),
            two_s * (i * j - k * r),
            two_s * (i * k + j * r),
            two_s * (i * j + k * r),
            1 - two_s * (i * i + k * k),
            two_s * (j * k - i * r),
            two_s * (i * k - j * r),
            two_s * (j * k + i * r),
            1 - two_s * (i * i + j * j),
        ),
        -1,
    )
    return o.reshape(quaternions.shape[:-1] + (3, 3))


def _copysign(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
    """

    Return a tensor where each element has the absolute value taken from the,

    corresponding element of a, with sign taken from the corresponding

    element of b. This is like the standard copysign floating-point operation,

    but is not careful about negative 0 and NaN.



    Args:

        a: source tensor.

        b: tensor whose signs will be used, of the same shape as a.



    Returns:

        Tensor of the same shape as a with the signs of b.

    """
    signs_differ = (a < 0) != (b < 0)
    return torch.where(signs_differ, -a, a)


def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
    """

    Returns torch.sqrt(torch.max(0, x))

    but with a zero subgradient where x is 0.

    """
    ret = torch.zeros_like(x)
    positive_mask = x > 0
    ret[positive_mask] = torch.sqrt(x[positive_mask])
    return ret


def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor:
    """

    Convert rotations given as rotation matrices to quaternions.



    Args:

        matrix: Rotation matrices as tensor of shape (..., 3, 3).



    Returns:

        quaternions with real part first, as tensor of shape (..., 4).

    """
    if matrix.size(-1) != 3 or matrix.size(-2) != 3:
        raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")

    batch_dim = matrix.shape[:-2]
    m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
        matrix.reshape(batch_dim + (9,)), dim=-1
    )

    q_abs = _sqrt_positive_part(
        torch.stack(
            [
                1.0 + m00 + m11 + m22,
                1.0 + m00 - m11 - m22,
                1.0 - m00 + m11 - m22,
                1.0 - m00 - m11 + m22,
            ],
            dim=-1,
        )
    )

    # we produce the desired quaternion multiplied by each of r, i, j, k
    quat_by_rijk = torch.stack(
        [
            torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
            torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
            torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
            torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
        ],
        dim=-2,
    )

    # We floor here at 0.1 but the exact level is not important; if q_abs is small,
    # the candidate won't be picked.
    flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device)
    quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr))

    # if not for numerical problems, quat_candidates[i] should be same (up to a sign),
    # forall i; we pick the best-conditioned one (with the largest denominator)

    return quat_candidates[
        F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :  # pyre-ignore[16]
    ].reshape(batch_dim + (4,))


def _axis_angle_rotation(axis: str, angle: torch.Tensor) -> torch.Tensor:
    """

    Return the rotation matrices for one of the rotations about an axis

    of which Euler angles describe, for each value of the angle given.



    Args:

        axis: Axis label "X" or "Y or "Z".

        angle: any shape tensor of Euler angles in radians



    Returns:

        Rotation matrices as tensor of shape (..., 3, 3).

    """

    cos = torch.cos(angle)
    sin = torch.sin(angle)
    one = torch.ones_like(angle)
    zero = torch.zeros_like(angle)

    if axis == "X":
        R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
    elif axis == "Y":
        R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
    elif axis == "Z":
        R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one)
    else:
        raise ValueError("letter must be either X, Y or Z.")

    return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3))


def euler_angles_to_matrix(euler_angles: torch.Tensor, convention: str) -> torch.Tensor:
    """

    Convert rotations given as Euler angles in radians to rotation matrices.



    Args:

        euler_angles: Euler angles in radians as tensor of shape (..., 3).

        convention: Convention string of three uppercase letters from

            {"X", "Y", and "Z"}.



    Returns:

        Rotation matrices as tensor of shape (..., 3, 3).

    """
    if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3:
        raise ValueError("Invalid input euler angles.")
    if len(convention) != 3:
        raise ValueError("Convention must have 3 letters.")
    if convention[1] in (convention[0], convention[2]):
        raise ValueError(f"Invalid convention {convention}.")
    for letter in convention:
        if letter not in ("X", "Y", "Z"):
            raise ValueError(f"Invalid letter {letter} in convention string.")
    matrices = [
        _axis_angle_rotation(c, e)
        for c, e in zip(convention, torch.unbind(euler_angles, -1))
    ]
    # return functools.reduce(torch.matmul, matrices)
    return torch.matmul(torch.matmul(matrices[0], matrices[1]), matrices[2])


def _angle_from_tan(

    axis: str, other_axis: str, data, horizontal: bool, tait_bryan: bool

) -> torch.Tensor:
    """

    Extract the first or third Euler angle from the two members of

    the matrix which are positive constant times its sine and cosine.



    Args:

        axis: Axis label "X" or "Y or "Z" for the angle we are finding.

        other_axis: Axis label "X" or "Y or "Z" for the middle axis in the

            convention.

        data: Rotation matrices as tensor of shape (..., 3, 3).

        horizontal: Whether we are looking for the angle for the third axis,

            which means the relevant entries are in the same row of the

            rotation matrix. If not, they are in the same column.

        tait_bryan: Whether the first and third axes in the convention differ.



    Returns:

        Euler Angles in radians for each matrix in data as a tensor

        of shape (...).

    """

    i1, i2 = {"X": (2, 1), "Y": (0, 2), "Z": (1, 0)}[axis]
    if horizontal:
        i2, i1 = i1, i2
    even = (axis + other_axis) in ["XY", "YZ", "ZX"]
    if horizontal == even:
        return torch.atan2(data[..., i1], data[..., i2])
    if tait_bryan:
        return torch.atan2(-data[..., i2], data[..., i1])
    return torch.atan2(data[..., i2], -data[..., i1])


def _index_from_letter(letter: str) -> int:
    if letter == "X":
        return 0
    if letter == "Y":
        return 1
    if letter == "Z":
        return 2
    raise ValueError("letter must be either X, Y or Z.")


def matrix_to_euler_angles(matrix: torch.Tensor, convention: str) -> torch.Tensor:
    """

    Convert rotations given as rotation matrices to Euler angles in radians.



    Args:

        matrix: Rotation matrices as tensor of shape (..., 3, 3).

        convention: Convention string of three uppercase letters.



    Returns:

        Euler angles in radians as tensor of shape (..., 3).

    """
    if len(convention) != 3:
        raise ValueError("Convention must have 3 letters.")
    if convention[1] in (convention[0], convention[2]):
        raise ValueError(f"Invalid convention {convention}.")
    for letter in convention:
        if letter not in ("X", "Y", "Z"):
            raise ValueError(f"Invalid letter {letter} in convention string.")
    if matrix.size(-1) != 3 or matrix.size(-2) != 3:
        raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")
    i0 = _index_from_letter(convention[0])
    i2 = _index_from_letter(convention[2])
    tait_bryan = i0 != i2
    if tait_bryan:
        central_angle = torch.asin(
            matrix[..., i0, i2] * (-1.0 if i0 - i2 in [-1, 2] else 1.0)
        )
    else:
        central_angle = torch.acos(matrix[..., i0, i0])

    o = (
        _angle_from_tan(
            convention[0], convention[1], matrix[..., i2], False, tait_bryan
        ),
        central_angle,
        _angle_from_tan(
            convention[2], convention[1], matrix[..., i0, :], True, tait_bryan
        ),
    )
    return torch.stack(o, -1)


def random_quaternions(

    n: int, dtype: Optional[torch.dtype] = None, device: Optional[Device] = None

) -> torch.Tensor:
    """

    Generate random quaternions representing rotations,

    i.e. versors with nonnegative real part.



    Args:

        n: Number of quaternions in a batch to return.

        dtype: Type to return.

        device: Desired device of returned tensor. Default:

            uses the current device for the default tensor type.



    Returns:

        Quaternions as tensor of shape (N, 4).

    """
    if isinstance(device, str):
        device = torch.device(device)
    o = torch.randn((n, 4), dtype=dtype, device=device)
    s = (o * o).sum(1)
    o = o / _copysign(torch.sqrt(s), o[:, 0])[:, None]
    return o


def random_rotations(

    n: int, dtype: Optional[torch.dtype] = None, device: Optional[Device] = None

) -> torch.Tensor:
    """

    Generate random rotations as 3x3 rotation matrices.



    Args:

        n: Number of rotation matrices in a batch to return.

        dtype: Type to return.

        device: Device of returned tensor. Default: if None,

            uses the current device for the default tensor type.



    Returns:

        Rotation matrices as tensor of shape (n, 3, 3).

    """
    quaternions = random_quaternions(n, dtype=dtype, device=device)
    return quaternion_to_matrix(quaternions)


def random_rotation(

    dtype: Optional[torch.dtype] = None, device: Optional[Device] = None

) -> torch.Tensor:
    """

    Generate a single random 3x3 rotation matrix.



    Args:

        dtype: Type to return

        device: Device of returned tensor. Default: if None,

            uses the current device for the default tensor type



    Returns:

        Rotation matrix as tensor of shape (3, 3).

    """
    return random_rotations(1, dtype, device)[0]


def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor:
    """

    Convert a unit quaternion to a standard form: one in which the real

    part is non negative.



    Args:

        quaternions: Quaternions with real part first,

            as tensor of shape (..., 4).



    Returns:

        Standardized quaternions as tensor of shape (..., 4).

    """
    return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions)


def quaternion_raw_multiply(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
    """

    Multiply two quaternions.

    Usual torch rules for broadcasting apply.



    Args:

        a: Quaternions as tensor of shape (..., 4), real part first.

        b: Quaternions as tensor of shape (..., 4), real part first.



    Returns:

        The product of a and b, a tensor of quaternions shape (..., 4).

    """
    aw, ax, ay, az = torch.unbind(a, -1)
    bw, bx, by, bz = torch.unbind(b, -1)
    ow = aw * bw - ax * bx - ay * by - az * bz
    ox = aw * bx + ax * bw + ay * bz - az * by
    oy = aw * by - ax * bz + ay * bw + az * bx
    oz = aw * bz + ax * by - ay * bx + az * bw
    return torch.stack((ow, ox, oy, oz), -1)


def quaternion_multiply(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
    """

    Multiply two quaternions representing rotations, returning the quaternion

    representing their composition, i.e. the versor with nonnegative real part.

    Usual torch rules for broadcasting apply.



    Args:

        a: Quaternions as tensor of shape (..., 4), real part first.

        b: Quaternions as tensor of shape (..., 4), real part first.



    Returns:

        The product of a and b, a tensor of quaternions of shape (..., 4).

    """
    ab = quaternion_raw_multiply(a, b)
    return standardize_quaternion(ab)


def quaternion_invert(quaternion: torch.Tensor) -> torch.Tensor:
    """

    Given a quaternion representing rotation, get the quaternion representing

    its inverse.



    Args:

        quaternion: Quaternions as tensor of shape (..., 4), with real part

            first, which must be versors (unit quaternions).



    Returns:

        The inverse, a tensor of quaternions of shape (..., 4).

    """

    scaling = torch.tensor([1, -1, -1, -1], device=quaternion.device)
    return quaternion * scaling


def quaternion_apply(quaternion: torch.Tensor, point: torch.Tensor) -> torch.Tensor:
    """

    Apply the rotation given by a quaternion to a 3D point.

    Usual torch rules for broadcasting apply.



    Args:

        quaternion: Tensor of quaternions, real part first, of shape (..., 4).

        point: Tensor of 3D points of shape (..., 3).



    Returns:

        Tensor of rotated points of shape (..., 3).

    """
    if point.size(-1) != 3:
        raise ValueError(f"Points are not in 3D, {point.shape}.")
    real_parts = point.new_zeros(point.shape[:-1] + (1,))
    point_as_quaternion = torch.cat((real_parts, point), -1)
    out = quaternion_raw_multiply(
        quaternion_raw_multiply(quaternion, point_as_quaternion),
        quaternion_invert(quaternion),
    )
    return out[..., 1:]


def axis_angle_to_matrix(axis_angle: torch.Tensor) -> torch.Tensor:
    """

    Convert rotations given as axis/angle to rotation matrices.



    Args:

        axis_angle: Rotations given as a vector in axis angle form,

            as a tensor of shape (..., 3), where the magnitude is

            the angle turned anticlockwise in radians around the

            vector's direction.



    Returns:

        Rotation matrices as tensor of shape (..., 3, 3).

    """
    return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle))


def matrix_to_axis_angle(matrix: torch.Tensor) -> torch.Tensor:
    """

    Convert rotations given as rotation matrices to axis/angle.



    Args:

        matrix: Rotation matrices as tensor of shape (..., 3, 3).



    Returns:

        Rotations given as a vector in axis angle form, as a tensor

            of shape (..., 3), where the magnitude is the angle

            turned anticlockwise in radians around the vector's

            direction.

    """
    return quaternion_to_axis_angle(matrix_to_quaternion(matrix))


def axis_angle_to_quaternion(axis_angle: torch.Tensor) -> torch.Tensor:
    """

    Convert rotations given as axis/angle to quaternions.



    Args:

        axis_angle: Rotations given as a vector in axis angle form,

            as a tensor of shape (..., 3), where the magnitude is

            the angle turned anticlockwise in radians around the

            vector's direction.



    Returns:

        quaternions with real part first, as tensor of shape (..., 4).

    """
    angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True)
    half_angles = angles * 0.5
    eps = 1e-6
    small_angles = angles.abs() < eps
    sin_half_angles_over_angles = torch.empty_like(angles)
    sin_half_angles_over_angles[~small_angles] = (
        torch.sin(half_angles[~small_angles]) / angles[~small_angles]
    )
    # for x small, sin(x/2) is about x/2 - (x/2)^3/6
    # so sin(x/2)/x is about 1/2 - (x*x)/48
    sin_half_angles_over_angles[small_angles] = (
        0.5 - (angles[small_angles] * angles[small_angles]) / 48
    )
    quaternions = torch.cat(
        [torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1
    )
    return quaternions


def quaternion_to_axis_angle(quaternions: torch.Tensor) -> torch.Tensor:
    """

    Convert rotations given as quaternions to axis/angle.



    Args:

        quaternions: quaternions with real part first,

            as tensor of shape (..., 4).



    Returns:

        Rotations given as a vector in axis angle form, as a tensor

            of shape (..., 3), where the magnitude is the angle

            turned anticlockwise in radians around the vector's

            direction.

    """
    norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True)
    half_angles = torch.atan2(norms, quaternions[..., :1])
    angles = 2 * half_angles
    eps = 1e-6
    small_angles = angles.abs() < eps
    sin_half_angles_over_angles = torch.empty_like(angles)
    sin_half_angles_over_angles[~small_angles] = (
        torch.sin(half_angles[~small_angles]) / angles[~small_angles]
    )
    # for x small, sin(x/2) is about x/2 - (x/2)^3/6
    # so sin(x/2)/x is about 1/2 - (x*x)/48
    sin_half_angles_over_angles[small_angles] = (
        0.5 - (angles[small_angles] * angles[small_angles]) / 48
    )
    return quaternions[..., 1:] / sin_half_angles_over_angles


def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor:
    """

    Converts 6D rotation representation by Zhou et al. [1] to rotation matrix

    using Gram--Schmidt orthogonalization per Section B of [1].

    Args:

        d6: 6D rotation representation, of size (*, 6)



    Returns:

        batch of rotation matrices of size (*, 3, 3)



    [1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.

    On the Continuity of Rotation Representations in Neural Networks.

    IEEE Conference on Computer Vision and Pattern Recognition, 2019.

    Retrieved from http://arxiv.org/abs/1812.07035

    """

    a1, a2 = d6[..., :3], d6[..., 3:]
    b1 = F.normalize(a1, dim=-1)
    b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1
    b2 = F.normalize(b2, dim=-1)
    b3 = torch.cross(b1, b2, dim=-1)
    return torch.stack((b1, b2, b3), dim=-2)


def matrix_to_rotation_6d(matrix: torch.Tensor) -> torch.Tensor:
    """

    Converts rotation matrices to 6D rotation representation by Zhou et al. [1]

    by dropping the last row. Note that 6D representation is not unique.

    Args:

        matrix: batch of rotation matrices of size (*, 3, 3)



    Returns:

        6D rotation representation, of size (*, 6)



    [1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.

    On the Continuity of Rotation Representations in Neural Networks.

    IEEE Conference on Computer Vision and Pattern Recognition, 2019.

    Retrieved from http://arxiv.org/abs/1812.07035

    """
    batch_dim = matrix.size()[:-2]
    return matrix[..., :2, :].clone().reshape(batch_dim + (6,))