File size: 5,366 Bytes
7648567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import numpy as np
import torch
import torch.nn.functional as F
import argparse
import tqdm
import json
import cv2 as cv
import os, glob
import math


from render_utils.lib.utils.graphics_utils import focal2fov, getProjectionMatrix
from diff_gaussian_rasterization import GaussianRasterizationSettings, GaussianRasterizer


def render3(
    gaussian_vals: dict,
    bg_color: torch.Tensor,
    extr: torch.Tensor,
    intr: torch.Tensor,
    img_w: int,
    img_h: int,
    scaling_modifier = 1.0,
    override_color = None,
    compute_cov3D_python = False
):
    means3D = gaussian_vals['positions']
    # Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
    screenspace_points = torch.zeros_like(means3D, dtype = means3D.dtype, requires_grad = True, device = "cuda") + 0
    try:
        screenspace_points.retain_grad()
    except:
        pass
    means2D = screenspace_points
    opacity = gaussian_vals['opacity']

    # If precomputed 3d covariance is provided, use it. If not, then it will be computed from
    # scaling / rotation by the rasterizer.
    scales = None
    rotations = None
    cov3D_precomp = None
    scales = gaussian_vals['scales']
    rotations = gaussian_vals['rotations']

    # If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors
    # from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer.
    shs = None
    # colors_precomp = None
    # if override_color is None:
    #     shs = gaussian_vals['shs']
    # else:
    #     colors_precomp = override_color
    if 'colors' in gaussian_vals:
        colors_precomp = gaussian_vals['colors']
    else:
        colors_precomp = None

    # Set up rasterization configuration
    FoVx = focal2fov(intr[0, 0].item(), img_w)
    FoVy = focal2fov(intr[1, 1].item(), img_h)
    tanfovx = math.tan(FoVx * 0.5)
    tanfovy = math.tan(FoVy * 0.5)
    world_view_transform = extr.transpose(1, 0).cuda()
    projection_matrix = getProjectionMatrix(znear = 0.1, zfar = 100, fovX = FoVx, fovY = FoVy, K = intr, img_w = img_w, img_h = img_h).transpose(0, 1).cuda()
    full_proj_transform = (world_view_transform.unsqueeze(0).bmm(projection_matrix.unsqueeze(0))).squeeze(0)
    camera_center = torch.linalg.inv(extr)[:3, 3]

    raster_settings = GaussianRasterizationSettings(
        image_height = img_h,
        image_width = img_w,
        tanfovx = tanfovx,
        tanfovy = tanfovy,
        bg = bg_color,
        scale_modifier = scaling_modifier,
        viewmatrix = world_view_transform,
        projmatrix = full_proj_transform,
        sh_degree = gaussian_vals['max_sh_degree'],
        campos = camera_center,
        prefiltered = False,
        debug = False
    )

    rasterizer = GaussianRasterizer(raster_settings = raster_settings)

    # Rasterize visible Gaussians to image, obtain their radii (on screen).
    rendered_image, radii = rasterizer(
        means3D = means3D,
        means2D = means2D,
        shs = shs,
        colors_precomp = colors_precomp,
        opacities = opacity,
        scales = scales,
        rotations = rotations,
        cov3D_precomp = cov3D_precomp)

    # Those Gaussians that were frustum culled or had a radius of 0 were not visible.
    # They will be excluded from value updates used in the splitting criteria.
    return {
        "render": rendered_image,
        "viewspace_points": screenspace_points,
        "visibility_filter": radii > 0,
        "radii": radii
    }


def blend_color(head_facial_color, body_facial_color, blend_weight):
    blend_weight = blend_weight.reshape([len(blend_weight)] + [1]*(len(head_facial_color.shape)-1))
    result = head_facial_color * blend_weight + body_facial_color * (1-blend_weight)
    return result


@torch.no_grad()
def paste_back_with_linear_interp(pasteback_scale, pasteback_center, src, tgt_size):
    pasteback_topleft = [pasteback_center[0] - src.shape[1]/2/pasteback_scale, 
                         pasteback_center[1] - src.shape[0]/2/pasteback_scale]

    h, w = src.shape[0], src.shape[1]
    grayscale = False
    if len(src.shape) == 2:
        src = src.reshape([h, w, 1])
        grayscale = True
    src = torch.from_numpy(src)
    src = src.permute(2, 0, 1).unsqueeze(0)
    grid = torch.meshgrid(torch.arange(0, tgt_size[0]), torch.arange(0, tgt_size[1]), indexing='xy')
    grid = torch.stack(grid, dim = -1).float().to(src.device).unsqueeze(0)
    grid[..., 0] = (grid[..., 0] - pasteback_topleft[0]) * pasteback_scale
    grid[..., 1] = (grid[..., 1] - pasteback_topleft[1]) * pasteback_scale

    grid[..., 0] = grid[..., 0] / (src.shape[-1] / 2.0) - 1.0
    grid[..., 1] = grid[..., 1] / (src.shape[-2] / 2.0) - 1.0
    out = F.grid_sample(src, grid, align_corners = True)
    out = out[0].detach().permute(1, 2, 0).cpu().numpy()
    if grayscale:
        out = out[:, :, 0]
    return out


def soften_blending_mask(blending_mask, valid_mask):
    blending_mask = np.clip(blending_mask*2.0, 0.0, 1.0)
    blending_mask = cv.erode(blending_mask, np.ones((5, 5))) * valid_mask
    blending_mask_bk = np.copy(blending_mask)
    blending_mask = cv.blur(blending_mask*valid_mask, (25, 25))
    valid_mask = cv.blur(valid_mask, (25, 25))
    blending_mask = blending_mask / (valid_mask + 1e-6) * blending_mask_bk
    return blending_mask