Spaces:
Sleeping
Sleeping
# | |
# Copyright (C) 2023, Inria | |
# GRAPHDECO research group, https://team.inria.fr/graphdeco | |
# All rights reserved. | |
# | |
# This software is free for non-commercial, research and evaluation use | |
# under the terms of the LICENSE.md file. | |
# | |
# For inquiries contact george.drettakis@inria.fr | |
# | |
import torch | |
import math | |
import numpy as np | |
from typing import NamedTuple | |
class BasicPointCloud(NamedTuple): | |
points : np.array | |
colors : np.array | |
normals : np.array | |
def geom_transform_points(points, transf_matrix): | |
P, _ = points.shape | |
ones = torch.ones(P, 1, dtype=points.dtype, device=points.device) | |
points_hom = torch.cat([points, ones], dim=1) | |
points_out = torch.matmul(points_hom, transf_matrix.unsqueeze(0)) | |
denom = points_out[..., 3:] + 0.0000001 | |
return (points_out[..., :3] / denom).squeeze(dim=0) | |
def getWorld2View(R, t): | |
Rt = np.zeros((4, 4)) | |
Rt[:3, :3] = R.transpose() | |
Rt[:3, 3] = t | |
Rt[3, 3] = 1.0 | |
return np.float32(Rt) | |
def getWorld2View2(R, t, translate=np.array([.0, .0, .0]), scale=1.0): | |
Rt = np.zeros((4, 4)) | |
Rt[:3, :3] = R.transpose() | |
Rt[:3, 3] = t | |
Rt[3, 3] = 1.0 | |
C2W = np.linalg.inv(Rt) | |
cam_center = C2W[:3, 3] | |
cam_center = (cam_center + translate) * scale | |
C2W[:3, 3] = cam_center | |
Rt = np.linalg.inv(C2W) | |
return np.float32(Rt) | |
def getProjectionMatrix(znear, zfar, fovX, fovY, K = None, img_h = None, img_w = None): | |
if K is None: | |
tanHalfFovY = math.tan((fovY / 2)) | |
tanHalfFovX = math.tan((fovX / 2)) | |
top = tanHalfFovY * znear | |
bottom = -top | |
right = tanHalfFovX * znear | |
left = -right | |
else: | |
near_fx = znear / K[0, 0] | |
near_fy = znear / K[1, 1] | |
left = - (img_w - K[0, 2]) * near_fx | |
right = K[0, 2] * near_fx | |
bottom = (K[1, 2] - img_h) * near_fy | |
top = K[1, 2] * near_fy | |
P = torch.zeros(4, 4) | |
z_sign = 1.0 | |
P[0, 0] = 2.0 * znear / (right - left) | |
P[1, 1] = 2.0 * znear / (top - bottom) | |
P[0, 2] = (right + left) / (right - left) | |
P[1, 2] = (top + bottom) / (top - bottom) | |
P[3, 2] = z_sign | |
P[2, 2] = z_sign * zfar / (zfar - znear) | |
P[2, 3] = -(zfar * znear) / (zfar - znear) | |
return P | |
def fov2focal(fov, pixels): | |
return pixels / (2 * math.tan(fov / 2)) | |
def focal2fov(focal, pixels): | |
return 2*math.atan(pixels/(2*focal)) | |
def _so3_exp_map( | |
log_rot: torch.Tensor, eps: float = 0.0001 | |
): | |
""" | |
A helper function that computes the so3 exponential map and, | |
apart from the rotation matrix, also returns intermediate variables | |
that can be re-used in other functions. | |
""" | |
def hat(v: torch.Tensor) -> torch.Tensor: | |
""" | |
Compute the Hat operator [1] of a batch of 3D vectors. | |
Args: | |
v: Batch of vectors of shape `(minibatch , 3)`. | |
Returns: | |
Batch of skew-symmetric matrices of shape | |
`(minibatch, 3 , 3)` where each matrix is of the form: | |
`[ 0 -v_z v_y ] | |
[ v_z 0 -v_x ] | |
[ -v_y v_x 0 ]` | |
Raises: | |
ValueError if `v` is of incorrect shape. | |
[1] https://en.wikipedia.org/wiki/Hat_operator | |
""" | |
N, dim = v.shape | |
if dim != 3: | |
raise ValueError("Input vectors have to be 3-dimensional.") | |
h = torch.zeros((N, 3, 3), dtype=v.dtype, device=v.device) | |
x, y, z = v.unbind(1) | |
h[:, 0, 1] = -z | |
h[:, 0, 2] = y | |
h[:, 1, 0] = z | |
h[:, 1, 2] = -x | |
h[:, 2, 0] = -y | |
h[:, 2, 1] = x | |
return h | |
_, dim = log_rot.shape | |
if dim != 3: | |
raise ValueError("Input tensor shape has to be Nx3.") | |
nrms = (log_rot * log_rot).sum(1) | |
# phis ... rotation angles | |
rot_angles = torch.clamp(nrms, eps).sqrt() | |
rot_angles_inv = 1.0 / rot_angles | |
fac1 = rot_angles_inv * rot_angles.sin() | |
fac2 = rot_angles_inv * rot_angles_inv * (1.0 - rot_angles.cos()) | |
skews = hat(log_rot) | |
skews_square = torch.bmm(skews, skews) | |
R = ( | |
# pyre-fixme[16]: `float` has no attribute `__getitem__`. | |
fac1[:, None, None] * skews | |
+ fac2[:, None, None] * skews_square | |
+ torch.eye(3, dtype=log_rot.dtype, device=log_rot.device)[None] | |
) | |
return R, rot_angles, skews, skews_square | |
def so3_exp_map(log_rot: torch.Tensor, eps: float = 0.0001) -> torch.Tensor: | |
""" | |
Convert a batch of logarithmic representations of rotation matrices `log_rot` | |
to a batch of 3x3 rotation matrices using Rodrigues formula [1]. | |
In the logarithmic representation, each rotation matrix is represented as | |
a 3-dimensional vector (`log_rot`) who's l2-norm and direction correspond | |
to the magnitude of the rotation angle and the axis of rotation respectively. | |
The conversion has a singularity around `log(R) = 0` | |
which is handled by clamping controlled with the `eps` argument. | |
Args: | |
log_rot: Batch of vectors of shape `(minibatch, 3)`. | |
eps: A float constant handling the conversion singularity. | |
Returns: | |
Batch of rotation matrices of shape `(minibatch, 3, 3)`. | |
Raises: | |
ValueError if `log_rot` is of incorrect shape. | |
[1] https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula | |
""" | |
return _so3_exp_map(log_rot, eps=eps)[0] | |