Spaces:
Sleeping
Sleeping
test
Browse files- avatar_generator.py +597 -0
avatar_generator.py
ADDED
@@ -0,0 +1,597 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from calendar import c
|
2 |
+
import os
|
3 |
+
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
4 |
+
# os.environ['TORCH_USE_CUDA_DSA'] = '1'
|
5 |
+
os.environ['OPENCV_IO_ENABLE_OPENEXR'] = '1'
|
6 |
+
import yaml
|
7 |
+
import shutil
|
8 |
+
import collections
|
9 |
+
import torch
|
10 |
+
import torch.utils.data
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import numpy as np
|
13 |
+
import cv2 as cv
|
14 |
+
import glob
|
15 |
+
import datetime
|
16 |
+
import trimesh
|
17 |
+
from torch.utils.tensorboard import SummaryWriter
|
18 |
+
from tqdm import tqdm
|
19 |
+
import importlib
|
20 |
+
# import config
|
21 |
+
from omegaconf import OmegaConf
|
22 |
+
import json
|
23 |
+
import math
|
24 |
+
import cv2
|
25 |
+
|
26 |
+
# AnimatableGaussians part
|
27 |
+
from AnimatableGaussians.network.lpips import LPIPS
|
28 |
+
from AnimatableGaussians.dataset.dataset_pose import PoseDataset
|
29 |
+
import AnimatableGaussians.utils.net_util as net_util
|
30 |
+
# import AnimatableGaussians.utils.visualize_util as visualize_util
|
31 |
+
from AnimatableGaussians.utils.camera_dir import get_camera_dir
|
32 |
+
from AnimatableGaussians.utils.renderer import Renderer
|
33 |
+
from AnimatableGaussians.utils.net_util import to_cuda
|
34 |
+
from AnimatableGaussians.utils.obj_io import save_mesh_as_ply
|
35 |
+
from AnimatableGaussians.gaussians.obj_io import save_gaussians_as_ply
|
36 |
+
import AnimatableGaussians.config as ag_config
|
37 |
+
|
38 |
+
# Gaussian-Head-Avatar part
|
39 |
+
from GHA.config.config import config_reenactment
|
40 |
+
from GHA.lib.dataset.Dataset import ReenactmentDataset
|
41 |
+
from GHA.lib.dataset.DataLoaderX import DataLoaderX
|
42 |
+
from GHA.lib.module.GaussianHeadModule import GaussianHeadModule
|
43 |
+
from GHA.lib.module.SuperResolutionModule import SuperResolutionModule
|
44 |
+
from GHA.lib.module.CameraModule import CameraModule
|
45 |
+
from GHA.lib.recorder.Recorder import ReenactmentRecorder
|
46 |
+
from GHA.lib.apps.Reenactment import Reenactment
|
47 |
+
from GHA.lib.utils.graphics_utils import getWorld2View2, getProjectionMatrix
|
48 |
+
|
49 |
+
# cat utils
|
50 |
+
from calc_offline_rendering_param import calc_offline_rendering_param
|
51 |
+
from calc_offline_rendering_param import load_camera_data
|
52 |
+
from render_utils.lib.networks.smpl_torch import SmplTorch
|
53 |
+
from render_utils.lib.utils.gaussian_np_utils import load_gaussians_from_ply
|
54 |
+
from render_utils.stitch_body_and_head import load_body_params, load_face_params, get_smpl_verts_and_head_transformation, calc_livehead2livebody
|
55 |
+
from render_utils.stitch_funcs import soften_blending_mask,paste_back_with_linear_interp
|
56 |
+
|
57 |
+
|
58 |
+
import ipdb
|
59 |
+
|
60 |
+
class Avatar:
|
61 |
+
def __init__(self, config):
|
62 |
+
self.config = config
|
63 |
+
self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
64 |
+
|
65 |
+
# animateble gaussians part init
|
66 |
+
self.body = config.animatablegaussians
|
67 |
+
self.body.mode = 'test'
|
68 |
+
ag_config.set_opt(self.body)
|
69 |
+
avatar_module = self.body['model'].get('module', 'AnimatableGaussians.network.avatar')
|
70 |
+
print('Import AvatarNet from %s' % avatar_module)
|
71 |
+
AvatarNet = importlib.import_module(avatar_module).AvatarNet
|
72 |
+
self.avatar_net = AvatarNet(self.body.model).to(self.device)
|
73 |
+
self.random_bg_color = self.body['train'].get('random_bg_color', True)
|
74 |
+
self.bg_color = (1., 1., 1.)
|
75 |
+
self.bg_color_cuda = torch.from_numpy(np.asarray(self.bg_color)).to(torch.float32).to(self.device)
|
76 |
+
self.loss_weight = self.body['train']['loss_weight']
|
77 |
+
self.finetune_color = self.body['train']['finetune_color']
|
78 |
+
print('# Parameter number of AvatarNet is %d' % (sum([p.numel() for p in self.avatar_net.parameters()])))
|
79 |
+
|
80 |
+
# gaussian head avatar part init
|
81 |
+
self.head = config.gha
|
82 |
+
# cat utils part init
|
83 |
+
self.cat = config.cat
|
84 |
+
|
85 |
+
def build_dataset(self, body_pose_path=None, face_exp_path=None):
|
86 |
+
# build body_dataset
|
87 |
+
|
88 |
+
if body_pose_path is not None:
|
89 |
+
self.body['test']['pose_data']['data_path'] = body_pose_path
|
90 |
+
body_pose = np.load(body_pose_path, allow_pickle = True)
|
91 |
+
# print('body_pose keys:', body_pose.keys())
|
92 |
+
# print('body_pose shape:', body_pose['poses'].shape)
|
93 |
+
self.body['test']['pose_data']['frame_range'] = [0,body_pose['poses'].shape[0]]
|
94 |
+
|
95 |
+
dataset_module = self.body.get('dataset', 'MvRgbDatasetAvatarReX')
|
96 |
+
MvRgbDataset = importlib.import_module('AnimatableGaussians.dataset.dataset_mv_rgb').__getattribute__(dataset_module)
|
97 |
+
self.body_training_dataset = MvRgbDataset(**self.body['train']['data'], training = False)
|
98 |
+
if self.body['test'].get('n_pca', -1) >= 1:
|
99 |
+
self.body_training_dataset.compute_pca(n_components = self.body['test']['n_pca'])
|
100 |
+
if 'pose_data' in self.body.test:
|
101 |
+
testing_dataset = PoseDataset(**self.body['test']['pose_data'], smpl_shape = self.body_training_dataset.smpl_data['betas'][0])
|
102 |
+
dataset_name = testing_dataset.dataset_name
|
103 |
+
seq_name = testing_dataset.seq_name
|
104 |
+
else:
|
105 |
+
# throw an error
|
106 |
+
raise ValueError('No pose data in test config')
|
107 |
+
self.body_dataset = testing_dataset
|
108 |
+
iter_idx = self.load_ckpt(self.body['test']['prev_ckpt'], False)[1]
|
109 |
+
|
110 |
+
|
111 |
+
self.head_config = config_reenactment()
|
112 |
+
self.head_config.load(self.head.config_path)
|
113 |
+
if face_exp_path is not None:
|
114 |
+
self.head_config.cfg.dataset.exp_path = face_exp_path
|
115 |
+
self.head_config.freeze()
|
116 |
+
self.head_config = self.head_config.get_cfg()
|
117 |
+
# build face dataset
|
118 |
+
self.head_dataset = ReenactmentDataset(self.head_config.dataset)
|
119 |
+
self.head_dataloader = DataLoaderX(self.head_dataset, batch_size=1, shuffle=False, pin_memory=True)
|
120 |
+
|
121 |
+
# device = torch.device('cuda:%d' % cfg.gpu_id)
|
122 |
+
|
123 |
+
gaussianhead_state_dict = torch.load(self.head_config.load_gaussianhead_checkpoint, map_location=lambda storage, loc: storage)
|
124 |
+
self.gaussianhead = GaussianHeadModule(self.head_config.gaussianheadmodule,
|
125 |
+
xyz=gaussianhead_state_dict['xyz'],
|
126 |
+
feature=gaussianhead_state_dict['feature'],
|
127 |
+
landmarks_3d_neutral=gaussianhead_state_dict['landmarks_3d_neutral']).to(self.device)
|
128 |
+
self.gaussianhead.load_state_dict(gaussianhead_state_dict)
|
129 |
+
|
130 |
+
self.supres = SuperResolutionModule(self.head_config.supresmodule).to(self.device)
|
131 |
+
self.supres.load_state_dict(torch.load(self.head_config.load_supres_checkpoint, map_location=lambda storage, loc: storage))
|
132 |
+
|
133 |
+
self.head_camera = CameraModule()
|
134 |
+
self.head_recorder = ReenactmentRecorder(self.head_config.recorder)
|
135 |
+
|
136 |
+
def render_all(self):
|
137 |
+
# len = short one
|
138 |
+
lenth = min(len(self.body_dataset), len(self.head_dataloader))
|
139 |
+
# build a tqdm bar
|
140 |
+
for idx in tqdm(range(lenth)):
|
141 |
+
self.reder_frame(idx)
|
142 |
+
|
143 |
+
# for idx in range(lenth):
|
144 |
+
# self.reder_frame(idx)
|
145 |
+
|
146 |
+
def reder_frame(self, idx):
|
147 |
+
# 渲染身体和各种mask
|
148 |
+
body_output = self.build_body(idx)
|
149 |
+
# 计算头的渲染参数
|
150 |
+
head_param = self.build_param(idx,body_output)
|
151 |
+
# 渲染头
|
152 |
+
head_output = self.build_head(idx, head_param)
|
153 |
+
# 把头和身体拼接起来
|
154 |
+
body_rendering= body_output['rgb_map_wo_hand'].astype(np.float32) / 255.0
|
155 |
+
# save body_rendering
|
156 |
+
# cv.imwrite('./output' + '/body_rgb_%08d.jpg' % idx, (body_output['rgb_map']).astype(np.uint8))
|
157 |
+
# cv.imwrite('./output' + '/body_rgb_wo_hand%08d.jpg' % idx, (body_output['rgb_map_wo_hand']).astype(np.uint8))
|
158 |
+
body_mask = body_output['mask_map'].astype(np.float32) / 255.0
|
159 |
+
body_torso_mask = body_output['torso_map'].astype(np.float32) / 255.0
|
160 |
+
head_rendering = head_output['render_images'].astype(np.float32) / 255.0
|
161 |
+
head_blending_mask = head_output['render_bw'].astype(np.float32) / 255.0
|
162 |
+
body_head_blending_params = np.load(self.cat.body_head_blending_param_path)
|
163 |
+
head_offline_rendering_param = head_param
|
164 |
+
stitch_output = self.stich_head_body(body_rendering, body_mask, body_torso_mask, head_rendering, head_blending_mask, body_head_blending_params, head_offline_rendering_param)
|
165 |
+
cv.imwrite('./output' + '/%08d.jpg' % idx, stitch_output)
|
166 |
+
|
167 |
+
# 渲染手和手的mask
|
168 |
+
|
169 |
+
# 把手拼上去
|
170 |
+
|
171 |
+
return stitch_output
|
172 |
+
|
173 |
+
pass
|
174 |
+
|
175 |
+
def load_ckpt(self, path, load_optm = True):
|
176 |
+
print('Loading networks from ', path + '/net.pt')
|
177 |
+
net_dict = torch.load(path + '/net.pt')
|
178 |
+
if 'avatar_net' in net_dict:
|
179 |
+
self.avatar_net.load_state_dict(net_dict['avatar_net'])
|
180 |
+
else:
|
181 |
+
print('[WARNING] Cannot find "avatar_net" from the network checkpoint!')
|
182 |
+
epoch_idx = net_dict['epoch_idx']
|
183 |
+
iter_idx = net_dict['iter_idx']
|
184 |
+
|
185 |
+
# if load_optm and os.path.exists(path + '/optm.pt'):
|
186 |
+
# print('Loading optimizers from ', path + '/optm.pt')
|
187 |
+
# optm_dict = torch.load(path + '/optm.pt')
|
188 |
+
# if 'avatar_net' in optm_dict:
|
189 |
+
# self.optm.load_state_dict(optm_dict['avatar_net'])
|
190 |
+
# else:
|
191 |
+
# print('[WARNING] Cannot find "avatar_net" from the optimizer checkpoint!')
|
192 |
+
|
193 |
+
return epoch_idx, iter_idx
|
194 |
+
|
195 |
+
@torch.no_grad()
|
196 |
+
def build_body(self,idx):
|
197 |
+
self.avatar_net.eval()
|
198 |
+
geo_renderer = None
|
199 |
+
item_0 = self.body_dataset.getitem(0, training = False)
|
200 |
+
object_center = item_0['live_bounds'].mean(0)
|
201 |
+
global_orient = item_0['global_orient'].cpu().numpy() if isinstance(item_0['global_orient'], torch.Tensor) else item_0['global_orient']
|
202 |
+
use_pca = self.body['test'].get('n_pca', -1) >= 1
|
203 |
+
# set x and z to 0
|
204 |
+
global_orient[0] = 0
|
205 |
+
global_orient[2] = 0
|
206 |
+
|
207 |
+
global_orient = cv.Rodrigues(global_orient)[0]
|
208 |
+
time_start = torch.cuda.Event(enable_timing = True)
|
209 |
+
time_start_all = torch.cuda.Event(enable_timing = True)
|
210 |
+
time_end = torch.cuda.Event(enable_timing = True)
|
211 |
+
|
212 |
+
if self.body['test'].get('fix_hand', False):
|
213 |
+
self.avatar_net.generate_mean_hands()
|
214 |
+
|
215 |
+
img_scale = self.body['test'].get('img_scale', 1.0)
|
216 |
+
view_setting = self.body['test'].get('view_setting', 'free')
|
217 |
+
extr, intr, img_h, img_w = get_camera_dir(idx, object_center, global_orient, img_scale, view_setting)
|
218 |
+
w2c = extr
|
219 |
+
c2w = np.linalg.inv(w2c)
|
220 |
+
pos = c2w[:3, 3]
|
221 |
+
rot = c2w[:3, :3]
|
222 |
+
serializable_array_2d = [x.tolist() for x in rot]
|
223 |
+
camera_entry = {
|
224 |
+
'width': int(img_w),
|
225 |
+
'height': int(img_h),
|
226 |
+
'position': pos.tolist(),
|
227 |
+
'rotation': serializable_array_2d,
|
228 |
+
'fy': float(intr[1, 1]),
|
229 |
+
'fx': float(intr[0, 0]),
|
230 |
+
}
|
231 |
+
|
232 |
+
getitem_func = self.body_dataset.getitem_fast if hasattr(self.body_dataset, 'getitem_fast') else self.body_dataset.getitem
|
233 |
+
item = getitem_func(
|
234 |
+
idx,
|
235 |
+
training = False,
|
236 |
+
extr = extr,
|
237 |
+
intr = intr,
|
238 |
+
img_w = img_w,
|
239 |
+
img_h = img_h
|
240 |
+
)
|
241 |
+
items = to_cuda(item, add_batch = False)
|
242 |
+
|
243 |
+
if 'smpl_pos_map' not in items:
|
244 |
+
self.avatar_net.get_pose_map(items)
|
245 |
+
|
246 |
+
# pca
|
247 |
+
if use_pca:
|
248 |
+
mask = self.body_training_dataset.pos_map_mask
|
249 |
+
live_pos_map = items['smpl_pos_map'].permute(1, 2, 0).cpu().numpy()
|
250 |
+
front_live_pos_map, back_live_pos_map = np.split(live_pos_map, [3], 2)
|
251 |
+
pose_conds = front_live_pos_map[mask]
|
252 |
+
new_pose_conds = self.body_training_dataset.transform_pca(pose_conds, sigma_pca = float(self.body['test'].get('sigma_pca', 2.)))
|
253 |
+
front_live_pos_map[mask] = new_pose_conds
|
254 |
+
live_pos_map = np.concatenate([front_live_pos_map, back_live_pos_map], 2)
|
255 |
+
items.update({
|
256 |
+
'smpl_pos_map_pca': torch.from_numpy(live_pos_map).to(self.device).permute(2, 0, 1)
|
257 |
+
})
|
258 |
+
|
259 |
+
# print items
|
260 |
+
# print(items.keys())
|
261 |
+
# print(items.values())
|
262 |
+
# exit()
|
263 |
+
|
264 |
+
# get render result
|
265 |
+
output = self.avatar_net.render(items, bg_color = self.bg_color, use_pca = use_pca)
|
266 |
+
output_wo_hand = self.avatar_net.render_wo_hand(items, bg_color = self.bg_color, use_pca = use_pca)
|
267 |
+
mask_output = self.avatar_net.render_mask(items, bg_color = self.bg_color, use_pca = use_pca)
|
268 |
+
|
269 |
+
# do some postprocess
|
270 |
+
rgb_map_wo_hand = output_wo_hand['rgb_map']
|
271 |
+
|
272 |
+
full_body_mask = mask_output['full_body_rgb_map']
|
273 |
+
full_body_mask.clip_(0., 1.)
|
274 |
+
full_body_mask = (full_body_mask * 255).to(torch.uint8)
|
275 |
+
|
276 |
+
hand_only_mask = mask_output['hand_only_rgb_map']
|
277 |
+
hand_only_mask.clip_(0., 1.)
|
278 |
+
hand_only_mask = (hand_only_mask * 255).to(torch.uint8)
|
279 |
+
|
280 |
+
# build the covered hand mask and the hand visualbility flag
|
281 |
+
body_red_mask = (mask_output['full_body_rgb_map'] - torch.tensor([1., 0., 0.], device = mask_output['full_body_rgb_map'].device))
|
282 |
+
body_red_mask = (body_red_mask*body_red_mask).sum(dim=2) < 0.01 # need save
|
283 |
+
|
284 |
+
hand_red_mask = (mask_output['hand_only_rgb_map'] - torch.tensor([1., 0., 0.], device = mask_output['hand_only_rgb_map'].device))
|
285 |
+
hand_red_mask = (hand_red_mask*hand_red_mask).sum(dim=2) < 0.0
|
286 |
+
if_mask_r_hand = abs(body_red_mask.sum() - hand_red_mask.sum()) / hand_red_mask.sum() > 0.95
|
287 |
+
if_mask_r_hand = if_mask_r_hand.cpu().numpy()
|
288 |
+
|
289 |
+
body_blue_mask = (mask_output['full_body_rgb_map'] - torch.tensor([0., 0., 1.], device = mask_output['full_body_rgb_map'].device))
|
290 |
+
body_blue_mask = (body_blue_mask*body_blue_mask).sum(dim=2) < 0.01 # need save
|
291 |
+
|
292 |
+
hand_blue_mask = (mask_output['hand_only_rgb_map'] - torch.tensor([0., 0., 1.], device = mask_output['hand_only_rgb_map'].device))
|
293 |
+
hand_blue_mask = (hand_blue_mask*hand_blue_mask).sum(dim=2) < 0.01
|
294 |
+
|
295 |
+
if_mask_l_hand = abs(body_blue_mask.sum() - hand_blue_mask.sum()) / hand_blue_mask.sum() > 0.95
|
296 |
+
if_mask_l_hand = if_mask_l_hand.cpu().numpy()
|
297 |
+
|
298 |
+
# 保存左右手被遮挡部分的mask
|
299 |
+
red_mask = hand_red_mask ^ (hand_red_mask & body_red_mask)
|
300 |
+
blue_mask = hand_blue_mask ^ (hand_blue_mask & body_blue_mask)
|
301 |
+
all_mask = red_mask | blue_mask
|
302 |
+
|
303 |
+
all_mask = (all_mask * 255).to(torch.uint8)
|
304 |
+
r_hand_mask = (body_red_mask * 255).to(torch.uint8)
|
305 |
+
l_hand_mask = (body_blue_mask * 255).to(torch.uint8)
|
306 |
+
hand_visual = [if_mask_r_hand, if_mask_l_hand]
|
307 |
+
|
308 |
+
# build sleeve mask
|
309 |
+
mask = (r_hand_mask>128) | (l_hand_mask>128)| (all_mask>128)
|
310 |
+
mask = mask.cpu().numpy().astype(np.uint8)
|
311 |
+
# 定义一个结构元素,可以调整其大小以改变膨胀的程度
|
312 |
+
kernel = np.ones((5, 5), np.uint8)
|
313 |
+
# 应用膨胀操作
|
314 |
+
mask = cv.dilate(mask, kernel, iterations=3)
|
315 |
+
mask = torch.tensor(mask).to(self.device)
|
316 |
+
|
317 |
+
left_hand_mask = mask_output['left_hand_rgb_map']
|
318 |
+
left_hand_mask.clip_(0., 1.)
|
319 |
+
# non white part is mask
|
320 |
+
left_hand_mask = (torch.tensor([1., 1., 1.], device = left_hand_mask.device) - left_hand_mask)
|
321 |
+
left_hand_mask = (left_hand_mask*left_hand_mask).sum(dim=2) > 0.01
|
322 |
+
# dele two hand mask
|
323 |
+
left_hand_mask = left_hand_mask & ~mask
|
324 |
+
|
325 |
+
right_hand_mask = mask_output['right_hand_rgb_map']
|
326 |
+
right_hand_mask.clip_(0., 1.)
|
327 |
+
right_hand_mask = (torch.tensor([1., 1., 1.], device = right_hand_mask.device) - right_hand_mask)
|
328 |
+
right_hand_mask = (right_hand_mask*right_hand_mask).sum(dim=2) > 0.01
|
329 |
+
right_hand_mask = right_hand_mask & ~mask
|
330 |
+
|
331 |
+
left_sleeve_mask = (left_hand_mask * 255).to(torch.uint8)
|
332 |
+
right_sleeve_mask = (right_hand_mask * 255).to(torch.uint8)
|
333 |
+
|
334 |
+
# 利用 r_hand_mask 和 l_hand_mask,将wo_hand图像中的mask部分覆盖rgb_map
|
335 |
+
rgb_map = output['rgb_map']
|
336 |
+
rgb_map.clip_(0., 1.)
|
337 |
+
rgb_map = (rgb_map * 255).to(torch.uint8).cpu().numpy()
|
338 |
+
|
339 |
+
rgb_map_wo_hand = output_wo_hand['rgb_map']
|
340 |
+
rgb_map_wo_hand.clip_(0., 1.)
|
341 |
+
rgb_map_wo_hand = (rgb_map_wo_hand * 255).to(torch.uint8).cpu().numpy()
|
342 |
+
|
343 |
+
r_mask = (r_hand_mask>128).cpu().numpy()
|
344 |
+
l_mask = (l_hand_mask>128).cpu().numpy()
|
345 |
+
mask = r_mask | l_mask
|
346 |
+
mask = mask.astype(np.uint8)
|
347 |
+
# 定义一个结构元素,可以调整其大小以改变膨胀的程度
|
348 |
+
kernel = np.ones((5, 5), np.uint8)
|
349 |
+
# 应用膨胀操作
|
350 |
+
mask = cv.dilate(mask, kernel, iterations=3)
|
351 |
+
mask = mask.astype(np.bool_)
|
352 |
+
mask = np.expand_dims(mask, axis=2)
|
353 |
+
# get the final rgb_map without hand
|
354 |
+
mix = rgb_map_wo_hand.copy() * mask + rgb_map * ~mask
|
355 |
+
|
356 |
+
torso_map = output['torso_map'][:, :, 0]
|
357 |
+
torso_map.clip_(0., 1.)
|
358 |
+
torso_map = (torso_map * 255).to(torch.uint8).cpu().numpy()
|
359 |
+
|
360 |
+
|
361 |
+
mask_map = output['mask_map'][:, :, 0]
|
362 |
+
mask_map.clip_(0., 1.)
|
363 |
+
mask_map = (mask_map * 255).to(torch.uint8).cpu().numpy()
|
364 |
+
|
365 |
+
output={
|
366 |
+
# smpl
|
367 |
+
'betas':self.body_training_dataset.smpl_data['betas'].reshape([-1]).detach().cpu().numpy(),
|
368 |
+
'global_orient':item['global_orient'].reshape([-1]).detach().cpu().numpy(),
|
369 |
+
'transl':item['transl'].reshape([-1]).detach().cpu().numpy(),
|
370 |
+
'body_pose':item['body_pose'].reshape([-1]).detach().cpu().numpy(),
|
371 |
+
|
372 |
+
# camera
|
373 |
+
'extr':extr,
|
374 |
+
'intr':intr,
|
375 |
+
'img_h':img_h,
|
376 |
+
'img_w':img_w,
|
377 |
+
'camera_entry':camera_entry,
|
378 |
+
|
379 |
+
# rgb and masks
|
380 |
+
'rgb_map':rgb_map,
|
381 |
+
'rgb_map_wo_hand':mix,
|
382 |
+
'torso_map':torso_map,
|
383 |
+
'mask_map':mask_map,
|
384 |
+
'all_mask':all_mask,
|
385 |
+
'left_sleeve_mask':left_sleeve_mask,
|
386 |
+
'right_sleeve_mask':right_sleeve_mask,
|
387 |
+
'hand_visual':hand_visual
|
388 |
+
}
|
389 |
+
|
390 |
+
return output
|
391 |
+
|
392 |
+
def build_param(self,idx,body_output):
|
393 |
+
head_gaussians = load_gaussians_from_ply(self.cat.ref_head_gaussian_path)
|
394 |
+
head_pose, head_scale, id_coeff, exp_coeff = load_face_params(self.cat.ref_head_param_path)
|
395 |
+
body_head_blending_params = np.load(self.cat.body_head_blending_param_path)
|
396 |
+
smplx_to_faceverse = body_head_blending_params['smplx_to_faceverse']
|
397 |
+
residual_transf = body_head_blending_params['residual_transf']
|
398 |
+
head_color_bw = body_head_blending_params['head_color_bw']
|
399 |
+
|
400 |
+
smpl = SmplTorch(model_file='./AnimatableGaussians/smpl_files/smplx/SMPLX_NEUTRAL.npz')
|
401 |
+
global_orient, transl, body_pose, betas = body_output['global_orient'], body_output['transl'], body_output['body_pose'], body_output['betas']
|
402 |
+
smpl_verts, head_joint_transfmat = get_smpl_verts_and_head_transformation(
|
403 |
+
smpl, global_orient, body_pose, transl, betas)
|
404 |
+
livehead2livebody = calc_livehead2livebody(head_pose, smplx_to_faceverse, head_joint_transfmat)
|
405 |
+
total_transf = np.matmul(livehead2livebody, residual_transf)
|
406 |
+
|
407 |
+
cam, image_size = load_camera_data(body_output['camera_entry'])
|
408 |
+
cam_extr = np.matmul(cam[0], total_transf)
|
409 |
+
cam_intr = np.copy(cam[1])
|
410 |
+
|
411 |
+
pts = np.copy(head_gaussians.xyz)
|
412 |
+
pts_proj = np.matmul(pts, cam_extr[:3, :3].transpose()) + cam_extr[:3, 3]
|
413 |
+
pts_proj = np.matmul(pts_proj, cam_intr.transpose())
|
414 |
+
pts_proj = pts_proj / pts_proj[:, 2:]
|
415 |
+
|
416 |
+
pts_min, pts_max = np.min(pts_proj, axis=0), np.max(pts_proj, axis=0)
|
417 |
+
pts_center = (pts_min + pts_max) // 2
|
418 |
+
pts_size = np.max(pts_max - pts_min)
|
419 |
+
tgt_pts_size = 350
|
420 |
+
tgt_image_size = 512
|
421 |
+
zoom_scale = tgt_pts_size / pts_size
|
422 |
+
cam_intr_zoom = np.copy(cam_intr)
|
423 |
+
cam_intr_zoom[:2] *= zoom_scale
|
424 |
+
cam_intr_zoom[0, 2] = cam_intr_zoom[0, 2] - (pts_center[0]*zoom_scale - tgt_image_size/2)
|
425 |
+
cam_intr_zoom[1, 2] = cam_intr_zoom[1, 2] - (pts_center[1]*zoom_scale - tgt_image_size/2)
|
426 |
+
|
427 |
+
output = {
|
428 |
+
'cam_extr':cam_extr,
|
429 |
+
'cam_intr':cam_intr,
|
430 |
+
'image_size':image_size,
|
431 |
+
'cam_intr_zoom':cam_intr_zoom,
|
432 |
+
'zoom_image_size':[tgt_image_size, tgt_image_size],
|
433 |
+
'zoom_center':pts_center,
|
434 |
+
'zoom_scale':zoom_scale,
|
435 |
+
'head_pose':head_pose,
|
436 |
+
'head_scale':head_scale,
|
437 |
+
'head_color_bw':head_color_bw,
|
438 |
+
}
|
439 |
+
|
440 |
+
return output
|
441 |
+
|
442 |
+
def build_head(self, idx, head_offline_rendering_param):
|
443 |
+
# head_offline_rendering_param = np.load(offline_rendering_param_fpath)
|
444 |
+
cam_extr = head_offline_rendering_param['cam_extr']
|
445 |
+
cam_intr = head_offline_rendering_param['cam_intr']
|
446 |
+
cam_intr_zoom = head_offline_rendering_param['cam_intr_zoom']
|
447 |
+
zoom_image_size = head_offline_rendering_param['zoom_image_size']
|
448 |
+
head_pose = head_offline_rendering_param['head_pose']
|
449 |
+
head_scale = head_offline_rendering_param['head_scale']
|
450 |
+
head_color_bw = head_offline_rendering_param['head_color_bw']
|
451 |
+
zoom_scale = head_offline_rendering_param['zoom_scale']
|
452 |
+
head_pose = torch.from_numpy(head_pose.astype(np.float32)).to(self.device)
|
453 |
+
head_color_bw = torch.from_numpy(head_color_bw.astype(np.float32)).to(self.device)
|
454 |
+
render_size = 512
|
455 |
+
|
456 |
+
# data = self.head_dataloader[idx]
|
457 |
+
data = self.head_dataset[idx]
|
458 |
+
# add batch dim
|
459 |
+
data = {k: v.unsqueeze(0) for k, v in data.items() if isinstance(v, torch.Tensor)}
|
460 |
+
# print(data.keys())
|
461 |
+
|
462 |
+
new_gs_camera_param_dict = self.prepare_camera_data_for_gs_rendering(cam_extr, cam_intr_zoom, render_size, render_size)
|
463 |
+
for k in new_gs_camera_param_dict.keys():
|
464 |
+
if isinstance(new_gs_camera_param_dict[k], torch.Tensor):
|
465 |
+
new_gs_camera_param_dict[k] = new_gs_camera_param_dict[k].unsqueeze(0).to(self.device)
|
466 |
+
new_gs_camera_param_dict['pose'] = head_pose.unsqueeze(0).to(self.device)
|
467 |
+
|
468 |
+
to_cuda = ['images', 'intrinsics', 'extrinsics', 'world_view_transform', 'projection_matrix', 'full_proj_transform', 'camera_center',
|
469 |
+
'pose', 'scale', 'exp_coeff', 'pose_code']
|
470 |
+
for data_item in to_cuda:
|
471 |
+
data[data_item] = data[data_item].to(device=self.device)
|
472 |
+
|
473 |
+
data.update(new_gs_camera_param_dict)
|
474 |
+
|
475 |
+
with torch.no_grad():
|
476 |
+
data = self.gaussianhead.generate(data)
|
477 |
+
data = self.head_camera.render_gaussian(data, 512)
|
478 |
+
render_images = data['render_images']
|
479 |
+
supres_images = self.supres(render_images)
|
480 |
+
data['supres_images'] = supres_images
|
481 |
+
data['bg_color'] = torch.zeros([1, 32], device=self.device, dtype=torch.float32)
|
482 |
+
data['color_bk'] = data.pop('color')
|
483 |
+
data['color'] = torch.ones_like(data['color_bk']) * head_color_bw.reshape([1, -1, 1]) * 2.0
|
484 |
+
data['color'][:, :, 1] = 1
|
485 |
+
data['color'] = torch.clamp(data['color'], 0., 1.)
|
486 |
+
data = self.head_camera.render_gaussian(data, render_size)
|
487 |
+
render_bw = data['render_images'][:, :3, :, :]
|
488 |
+
data['color'] = data.pop('color_bk')
|
489 |
+
data['render_bw'] = render_bw
|
490 |
+
|
491 |
+
supres_image = data['supres_images'][0].permute(1, 2, 0).detach().cpu().numpy()
|
492 |
+
supres_image = (supres_image * 255).astype(np.uint8)[:,:,::-1]
|
493 |
+
|
494 |
+
render_bw = data['render_bw'][0].permute(1, 2, 0).detach().cpu().numpy()
|
495 |
+
render_bw = np.clip(render_bw * 255, 0, 255).astype(np.uint8)[:,:,::-1]
|
496 |
+
render_bw = cv2.resize(render_bw, (supres_image.shape[0], supres_image.shape[1]))
|
497 |
+
|
498 |
+
|
499 |
+
output = {
|
500 |
+
'render_images':supres_image,
|
501 |
+
'render_bw':render_bw,
|
502 |
+
}
|
503 |
+
|
504 |
+
return output
|
505 |
+
|
506 |
+
def prepare_camera_data_for_gs_rendering(self, extrinsic, intrinsic, original_resolution, new_resolution):
|
507 |
+
extrinsic = np.copy(extrinsic)
|
508 |
+
intrinsic = np.copy(intrinsic)
|
509 |
+
new_intrinsic = np.copy(intrinsic)
|
510 |
+
new_intrinsic[:2] *= new_resolution / original_resolution
|
511 |
+
|
512 |
+
intrinsic[0, 0] = intrinsic[0, 0] * 2 / original_resolution
|
513 |
+
intrinsic[0, 2] = intrinsic[1, 2] * 2 / original_resolution - 1
|
514 |
+
intrinsic[1, 1] = intrinsic[1, 1] * 2 / original_resolution
|
515 |
+
intrinsic[1, 2] = intrinsic[1, 2] * 2 / original_resolution - 1
|
516 |
+
fovx = 2 * math.atan(1 / intrinsic[0, 0])
|
517 |
+
fovy = 2 * math.atan(1 / intrinsic[1, 1])
|
518 |
+
|
519 |
+
world_view_transform = torch.tensor(getWorld2View2(extrinsic[:3, :3].transpose(), extrinsic[:3, 3])).transpose(0, 1)
|
520 |
+
projection_matrix = getProjectionMatrix(
|
521 |
+
znear=0.01, zfar=100, fovX=None, fovY=None,
|
522 |
+
K=new_intrinsic, img_h=new_resolution, img_w=new_resolution).transpose(0,1)
|
523 |
+
full_proj_transform = (world_view_transform.unsqueeze(0).bmm(projection_matrix.unsqueeze(0))).squeeze(0)
|
524 |
+
camera_center = world_view_transform.inverse()[3, :3]
|
525 |
+
|
526 |
+
c2w = np.linalg.inv(extrinsic)
|
527 |
+
viewdir = np.matmul(c2w[:3, :3], np.array([0, 0, -1], np.float32).reshape([3, 1])).reshape([-1])
|
528 |
+
viewdir = torch.from_numpy(viewdir.astype(np.float32))
|
529 |
+
|
530 |
+
return {
|
531 |
+
'extrinsics': torch.from_numpy(extrinsic.astype(np.float32)),
|
532 |
+
'intrinsics': torch.from_numpy(intrinsic.astype(np.float32)),
|
533 |
+
'viewdir': viewdir,
|
534 |
+
'fovx': torch.Tensor([fovx]),
|
535 |
+
'fovy': torch.Tensor([fovy]),
|
536 |
+
'world_view_transform': world_view_transform,
|
537 |
+
'projection_matrix': projection_matrix,
|
538 |
+
'full_proj_transform': full_proj_transform,
|
539 |
+
'camera_center': camera_center
|
540 |
+
}
|
541 |
+
|
542 |
+
def stich_head_body(self,body_rendering,body_mask,body_torso_mask,head_rendering,head_blending_mask,body_head_blending_params,head_offline_rendering_param):
|
543 |
+
color_transfer = body_head_blending_params['color_transfer']
|
544 |
+
zoom_image_size = head_offline_rendering_param['zoom_image_size']
|
545 |
+
zoom_center = head_offline_rendering_param['zoom_center']
|
546 |
+
zoom_scale = head_offline_rendering_param['zoom_scale']
|
547 |
+
|
548 |
+
|
549 |
+
if len(body_mask.shape) == 3:
|
550 |
+
body_mask = body_mask[:, :, 0]
|
551 |
+
if len(body_torso_mask.shape) == 3:
|
552 |
+
body_torso_mask = body_torso_mask[:, :, 0]
|
553 |
+
|
554 |
+
head_rendering = cv2.resize(head_rendering, (int(zoom_image_size[0]), int(zoom_image_size[1])))
|
555 |
+
head_blending_mask = cv2.resize(head_blending_mask, (int(zoom_image_size[0]), int(zoom_image_size[1])))
|
556 |
+
head_mask = head_blending_mask[:, :, 1]
|
557 |
+
head_blending_mask = head_blending_mask[:, :, 0]
|
558 |
+
head_blending_mask = soften_blending_mask(head_blending_mask, head_mask)
|
559 |
+
|
560 |
+
pasteback_center = zoom_center
|
561 |
+
pasteback_scale = zoom_scale
|
562 |
+
|
563 |
+
head_rendering_back = paste_back_with_linear_interp(pasteback_scale, pasteback_center, head_rendering, [body_rendering.shape[1], body_rendering.shape[0]])
|
564 |
+
head_blending_mask_back = paste_back_with_linear_interp(pasteback_scale, pasteback_center, head_blending_mask, [body_rendering.shape[1], body_rendering.shape[0]])
|
565 |
+
head_mask_back = paste_back_with_linear_interp(pasteback_scale, pasteback_center, head_mask, [body_rendering.shape[1], body_rendering.shape[0]])
|
566 |
+
# head_blending_mask_back *= body_mask
|
567 |
+
# head_mask_back *= body_mask
|
568 |
+
head_blending_mask_back = head_blending_mask_back * (1 - body_torso_mask)
|
569 |
+
|
570 |
+
head_rendering_back_shape = head_rendering_back.shape
|
571 |
+
head_rendering_back = np.matmul(head_rendering_back.reshape(-1, 3), color_transfer[:3, :3].transpose()) + color_transfer[:3, 3][None]
|
572 |
+
head_rendering_back = head_rendering_back.reshape(head_rendering_back_shape)
|
573 |
+
head_rendering_back = head_rendering_back * head_mask_back[:, :, None] + (1 - head_mask_back[:, :, None])
|
574 |
+
|
575 |
+
body_rendering = body_rendering * (1 - head_blending_mask_back[:, :, None]) + head_rendering_back * head_blending_mask_back[:, :, None]
|
576 |
+
|
577 |
+
return np.uint8(np.clip(body_rendering, 0, 1)*255)
|
578 |
+
|
579 |
+
# def build_hand(betas,poses,camera):
|
580 |
+
|
581 |
+
# # build hand here
|
582 |
+
|
583 |
+
# output = {
|
584 |
+
# 'hand_render':render,
|
585 |
+
# 'hand_mask':mask,
|
586 |
+
|
587 |
+
# }
|
588 |
+
|
589 |
+
# return output
|
590 |
+
|
591 |
+
|
592 |
+
if __name__ == '__main__':
|
593 |
+
conf = OmegaConf.load('configs/example.yaml')
|
594 |
+
avatar = Avatar(conf)
|
595 |
+
avatar.build_dataset()
|
596 |
+
# avatar.test_body()
|
597 |
+
avatar.render_all()
|