Spaces:
Sleeping
Sleeping
all
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +7 -0
- __MACOSX/._AnimatableGaussians +0 -0
- __MACOSX/._GHA +0 -0
- __MACOSX/._avatar_generator.py +0 -0
- __MACOSX/._calc_offline_rendering_param.py +0 -0
- __MACOSX/._checkpoints +0 -0
- __MACOSX/._configs +0 -0
- __MACOSX/._gradio_page.py +0 -0
- __MACOSX/._render_utils +0 -0
- __MACOSX/._test_data +0 -0
- __MACOSX/AnimatableGaussians/._.DS_Store +0 -0
- __MACOSX/checkpoints/._pos_map_ys +0 -0
- __MACOSX/test_data/._.DS_Store +0 -0
- app.py +144 -4
- avatar.py +642 -0
- calc_offline_rendering_param.py +188 -0
- configs/example.yaml +89 -0
- configs/head.yaml +39 -0
- gradio_debug.py +21 -0
- other_requirement.sh +19 -0
- output/00000000.jpg +0 -0
- output/00000001.jpg +0 -0
- output/00000002.jpg +0 -0
- output/00000003.jpg +0 -0
- output/00000004.jpg +0 -0
- output/00000005.jpg +0 -0
- output/00000006.jpg +0 -0
- output/00000007.jpg +0 -0
- output/00000008.jpg +0 -0
- output/00000009.jpg +0 -0
- output/00000010.jpg +0 -0
- output/00000011.jpg +0 -0
- output/00000012.jpg +0 -0
- output/00000013.jpg +0 -0
- output/00000014.jpg +0 -0
- output/00000015.jpg +0 -0
- output/00000016.jpg +0 -0
- output/00000017.jpg +0 -0
- output/00000018.jpg +0 -0
- output/00000019.jpg +0 -0
- output/00000020.jpg +0 -0
- output/00000021.jpg +0 -0
- output/00000022.jpg +0 -0
- output/00000023.jpg +0 -0
- output/00000024.jpg +0 -0
- output/00000025.jpg +0 -0
- output/00000026.jpg +0 -0
- output/00000027.jpg +0 -0
- output/00000028.jpg +0 -0
- output/00000029.jpg +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,10 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
checkpoints/face_0929/gaussianhead_latest filter=lfs diff=lfs merge=lfs -text
|
37 |
+
checkpoints/face_0929/supres_latest filter=lfs diff=lfs merge=lfs -text
|
38 |
+
checkpoints/face_0929/delta_poses_latest filter=lfs diff=lfs merge=lfs -text
|
39 |
+
checkpoints/pos_map_ys/body_mix/smpl_pos_map/cano_smpl_nml_map.exr filter=lfs diff=lfs merge=lfs -text
|
40 |
+
checkpoints/pos_map_ys/body_mix/smpl_pos_map/cano_smpl_pos_map.exr filter=lfs diff=lfs merge=lfs -text
|
41 |
+
checkpoints/ref_gaussian/head/000000.ply filter=lfs diff=lfs merge=lfs -text
|
42 |
+
checkpoints/ filter=lfs diff=lfs merge=lfs -text
|
__MACOSX/._AnimatableGaussians
ADDED
Binary file (220 Bytes). View file
|
|
__MACOSX/._GHA
ADDED
Binary file (220 Bytes). View file
|
|
__MACOSX/._avatar_generator.py
ADDED
Binary file (220 Bytes). View file
|
|
__MACOSX/._calc_offline_rendering_param.py
ADDED
Binary file (220 Bytes). View file
|
|
__MACOSX/._checkpoints
ADDED
Binary file (220 Bytes). View file
|
|
__MACOSX/._configs
ADDED
Binary file (220 Bytes). View file
|
|
__MACOSX/._gradio_page.py
ADDED
Binary file (220 Bytes). View file
|
|
__MACOSX/._render_utils
ADDED
Binary file (220 Bytes). View file
|
|
__MACOSX/._test_data
ADDED
Binary file (220 Bytes). View file
|
|
__MACOSX/AnimatableGaussians/._.DS_Store
ADDED
Binary file (120 Bytes). View file
|
|
__MACOSX/checkpoints/._pos_map_ys
ADDED
Binary file (220 Bytes). View file
|
|
__MACOSX/test_data/._.DS_Store
ADDED
Binary file (120 Bytes). View file
|
|
app.py
CHANGED
@@ -1,7 +1,147 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import moviepy.editor as mpy
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
from omegaconf import OmegaConf
|
6 |
+
from tqdm import tqdm
|
7 |
+
import shutil
|
8 |
+
import time
|
9 |
+
from avatar_generator import Avatar
|
10 |
|
11 |
+
# # 指定保存文件的目录
|
12 |
+
# SAVE_DIR = "./uploaded_files"
|
13 |
+
# os.makedirs(SAVE_DIR, exist_ok=True) # 创建目录(如果不存在)
|
14 |
+
# 全局变量,用于控制任务是否应当终止
|
15 |
+
should_stop = False
|
16 |
|
17 |
+
|
18 |
+
# 定义逐帧处理的函数
|
19 |
+
def process_files(file1, file2):
|
20 |
+
global should_stop
|
21 |
+
should_stop = False # 重置停止标志
|
22 |
+
|
23 |
+
yield None, None, None, "Starting Process!"
|
24 |
+
|
25 |
+
file_path1 = file1.name
|
26 |
+
file_path2 = file2.name
|
27 |
+
pose_data = np.load(file_path1)
|
28 |
+
exp_data = np.load(file_path2)
|
29 |
+
|
30 |
+
# save
|
31 |
+
pose_path = './test_data/AMASS/online_test_pose_data.npz'
|
32 |
+
exp_path = './test_data/face_exp/online_test_exp_data.npy'
|
33 |
+
|
34 |
+
np.savez(pose_path, **pose_data)
|
35 |
+
np.save(exp_path, exp_data)
|
36 |
+
|
37 |
+
|
38 |
+
# with open(file1.name, 'rb') as fsrc:
|
39 |
+
# with open(file_path1, 'wb') as fdst:
|
40 |
+
# shutil.copyfileobj(fsrc, fdst)
|
41 |
+
|
42 |
+
# with open(file2.name, 'rb') as fsrc:
|
43 |
+
# with open(file_path2, 'wb') as fdst:
|
44 |
+
# shutil.copyfileobj(fsrc, fdst)
|
45 |
+
|
46 |
+
conf = OmegaConf.load('configs/example.yaml')
|
47 |
+
avatar = Avatar(conf)
|
48 |
+
avatar.build_dataset(pose_path, exp_path)
|
49 |
+
|
50 |
+
lenth = min(len(avatar.body_dataset), len(avatar.head_dataloader),20)
|
51 |
+
output_frames = []
|
52 |
+
|
53 |
+
start_time = time.time()
|
54 |
+
for idx in tqdm(range(lenth)):
|
55 |
+
if should_stop:
|
56 |
+
yield None, None, None, None
|
57 |
+
break # 任务应当终止时跳出循环
|
58 |
+
frame = avatar.reder_frame(idx)
|
59 |
+
# rgb2bgr
|
60 |
+
frame = frame[..., ::-1]
|
61 |
+
output_frames.append(frame)
|
62 |
+
|
63 |
+
elapsed_time = time.time() - start_time
|
64 |
+
estimated_total_time = (elapsed_time / (idx + 1)) * lenth
|
65 |
+
remaining_time = estimated_total_time - elapsed_time
|
66 |
+
|
67 |
+
yield frame, None, (idx + 1) / lenth * 100, f"{elapsed_time:.2f} sec/{estimated_total_time:.2f} sec"
|
68 |
+
|
69 |
+
if not should_stop:
|
70 |
+
output_path = "./output/output_video.mp4"
|
71 |
+
final_video = mpy.ImageSequenceClip(output_frames, fps=25)
|
72 |
+
final_video.write_videofile(output_path, codec='libx264')
|
73 |
+
|
74 |
+
yield output_frames[-1], output_path, 100.0, "Processing completed!"
|
75 |
+
|
76 |
+
# 清除操作
|
77 |
+
def clear_files():
|
78 |
+
global should_stop
|
79 |
+
should_stop = True # 设置停止标志
|
80 |
+
|
81 |
+
# 返回空值以清空界面元素
|
82 |
+
return None, None, None, None, None, None
|
83 |
+
|
84 |
+
|
85 |
+
# 创建 Gradio 接口
|
86 |
+
with gr.Blocks(css="""
|
87 |
+
.equal-height {
|
88 |
+
height: 425px; /* 设置为你希望的高度 */
|
89 |
+
display: flex;
|
90 |
+
flex-direction: column;
|
91 |
+
justify-content: center;
|
92 |
+
align-items: center;
|
93 |
+
}
|
94 |
+
.equal-height input {
|
95 |
+
height: 100%; /* 输入框占满整个容器高度 */
|
96 |
+
}
|
97 |
+
.output-container {
|
98 |
+
height: 400px; /* 输出框的高度 */
|
99 |
+
}
|
100 |
+
.custom-text {
|
101 |
+
height: 80px; /* 输出框的高度 */
|
102 |
+
}
|
103 |
+
""") as demo:
|
104 |
+
with gr.Row():
|
105 |
+
# 左侧列,用于放置文件输入
|
106 |
+
with gr.Column(scale=1):
|
107 |
+
with gr.Row(elem_classes="equal-height"):
|
108 |
+
file_input1 = gr.File(label="Upload File (Body Pose)")
|
109 |
+
file_input2 = gr.File(label="Upload File (Face EXP)")
|
110 |
+
|
111 |
+
with gr.Column(scale=2):
|
112 |
+
with gr.Row():
|
113 |
+
# 中间列,用于放置帧输出
|
114 |
+
with gr.Column(scale=1):
|
115 |
+
frame_output = gr.Image(label="Current Frame Output", elem_classes="output-container") # 输出当前帧图像
|
116 |
+
# 右侧列,用于放置视频输出
|
117 |
+
with gr.Column(scale=1):
|
118 |
+
video_output = gr.Video(label="Processed Video Output", elem_classes="output-container") # 输出视频
|
119 |
+
# progress_bar = gr.Label(label="Progress")
|
120 |
+
with gr.Row():
|
121 |
+
with gr.Column(scale=2):
|
122 |
+
progress_bar = gr.Slider(visible=True, minimum=0, maximum=100, step=1, label="Progress %",elem_classes="custom-text") # 使用Slider模拟进度条
|
123 |
+
with gr.Column(scale=1):
|
124 |
+
output_time = gr.Textbox(label='Processing Time/Estimate Time', elem_classes="custom-text")
|
125 |
+
# time_label = gr.Label(value="", label="Estimated Time Remaining", elem_classes="custom-label")
|
126 |
+
# with gr.Row():
|
127 |
+
# progress_bar = gr.Progress() # 添加进度条
|
128 |
+
with gr.Row():
|
129 |
+
process_button = gr.Button("Start Processing Files")
|
130 |
+
clear_button = gr.Button("Clear or Stop Processing")
|
131 |
+
|
132 |
+
# 定义按钮的功能
|
133 |
+
process_button.click(
|
134 |
+
fn=process_files,
|
135 |
+
inputs=[file_input1, file_input2],
|
136 |
+
outputs=[frame_output, video_output, progress_bar, output_time],
|
137 |
+
show_progress=False
|
138 |
+
)
|
139 |
+
|
140 |
+
clear_button.click(
|
141 |
+
fn= clear_files,
|
142 |
+
inputs=[],
|
143 |
+
outputs=[file_input1, file_input2, frame_output, video_output, progress_bar, output_time]
|
144 |
+
)
|
145 |
+
|
146 |
+
# 启动应用
|
147 |
+
demo.launch()
|
avatar.py
ADDED
@@ -0,0 +1,642 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from calendar import c
|
2 |
+
import os
|
3 |
+
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
4 |
+
# os.environ['TORCH_USE_CUDA_DSA'] = '1'
|
5 |
+
os.environ['OPENCV_IO_ENABLE_OPENEXR'] = '1'
|
6 |
+
import yaml
|
7 |
+
import shutil
|
8 |
+
import collections
|
9 |
+
import torch
|
10 |
+
import torch.utils.data
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import numpy as np
|
13 |
+
import cv2 as cv
|
14 |
+
import glob
|
15 |
+
import datetime
|
16 |
+
import trimesh
|
17 |
+
from torch.utils.tensorboard import SummaryWriter
|
18 |
+
from tqdm import tqdm
|
19 |
+
import importlib
|
20 |
+
# import config
|
21 |
+
from omegaconf import OmegaConf
|
22 |
+
import json
|
23 |
+
|
24 |
+
# AnimatableGaussians part
|
25 |
+
from AnimatableGaussians.network.lpips import LPIPS
|
26 |
+
from AnimatableGaussians.dataset.dataset_pose import PoseDataset
|
27 |
+
import AnimatableGaussians.utils.net_util as net_util
|
28 |
+
import AnimatableGaussians.utils.visualize_util as visualize_util
|
29 |
+
from AnimatableGaussians.utils.renderer import Renderer
|
30 |
+
from AnimatableGaussians.utils.net_util import to_cuda
|
31 |
+
from AnimatableGaussians.utils.obj_io import save_mesh_as_ply
|
32 |
+
from AnimatableGaussians.gaussians.obj_io import save_gaussians_as_ply
|
33 |
+
import AnimatableGaussians.config as ag_config
|
34 |
+
|
35 |
+
# Gaussian-Head-Avatar part
|
36 |
+
from GHA.config.config import config_reenactment
|
37 |
+
from GHA.lib.dataset.Dataset import ReenactmentDataset
|
38 |
+
from GHA.lib.dataset.DataLoaderX import DataLoaderX
|
39 |
+
from GHA.lib.module.GaussianHeadModule import GaussianHeadModule
|
40 |
+
from GHA.lib.module.SuperResolutionModule import SuperResolutionModule
|
41 |
+
from GHA.lib.module.CameraModule import CameraModule
|
42 |
+
from GHA.lib.recorder.Recorder import ReenactmentRecorder
|
43 |
+
from GHA.lib.apps.Reenactment import Reenactment
|
44 |
+
|
45 |
+
# cat utils
|
46 |
+
from calc_offline_rendering_param import calc_offline_rendering_param
|
47 |
+
|
48 |
+
import ipdb
|
49 |
+
|
50 |
+
class Avatar:
|
51 |
+
def __init__(self, config):
|
52 |
+
self.config = config
|
53 |
+
self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
54 |
+
|
55 |
+
# animateble gaussians part init
|
56 |
+
self.body = config.animatablegaussians
|
57 |
+
self.body.mode = 'test'
|
58 |
+
ag_config.set_opt(self.body)
|
59 |
+
avatar_module = self.body['model'].get('module', 'AnimatableGaussians.network.avatar')
|
60 |
+
print('Import AvatarNet from %s' % avatar_module)
|
61 |
+
AvatarNet = importlib.import_module(avatar_module).AvatarNet
|
62 |
+
self.avatar_net = AvatarNet(self.body.model).to(self.device)
|
63 |
+
self.random_bg_color = self.body['train'].get('random_bg_color', True)
|
64 |
+
self.bg_color = (1., 1., 1.)
|
65 |
+
self.bg_color_cuda = torch.from_numpy(np.asarray(self.bg_color)).to(torch.float32).to(self.device)
|
66 |
+
self.loss_weight = self.body['train']['loss_weight']
|
67 |
+
self.finetune_color = self.body['train']['finetune_color']
|
68 |
+
print('# Parameter number of AvatarNet is %d' % (sum([p.numel() for p in self.avatar_net.parameters()])))
|
69 |
+
|
70 |
+
# gaussian head avatar part init
|
71 |
+
self.head = config.gha
|
72 |
+
self.head_config = config_reenactment()
|
73 |
+
self.head_config.load(self.head.config_path)
|
74 |
+
self.head_config = self.head_config.get_cfg()
|
75 |
+
|
76 |
+
# cat utils part init
|
77 |
+
self.cat = config.cat
|
78 |
+
|
79 |
+
@torch.no_grad()
|
80 |
+
def test_body(self):
|
81 |
+
# run the animatable gaussian test
|
82 |
+
self.avatar_net.eval()
|
83 |
+
dataset_module = self.body.get('dataset', 'MvRgbDatasetAvatarReX')
|
84 |
+
MvRgbDataset = importlib.import_module('AnimatableGaussians.dataset.dataset_mv_rgb').__getattribute__(dataset_module)
|
85 |
+
training_dataset = MvRgbDataset(**self.body['train']['data'], training = False)
|
86 |
+
if self.body['test'].get('n_pca', -1) >= 1:
|
87 |
+
training_dataset.compute_pca(n_components = self.body['test']['n_pca'])
|
88 |
+
if 'pose_data' in self.body.test:
|
89 |
+
testing_dataset = PoseDataset(**self.body['test']['pose_data'], smpl_shape = training_dataset.smpl_data['betas'][0])
|
90 |
+
dataset_name = testing_dataset.dataset_name
|
91 |
+
seq_name = testing_dataset.seq_name
|
92 |
+
else:
|
93 |
+
# throw an error
|
94 |
+
raise ValueError('No pose data in test config')
|
95 |
+
|
96 |
+
self.dataset = testing_dataset
|
97 |
+
# iter_idx = self.load_ckpt(self.body['test']['prev_ckpt'], False)[1]
|
98 |
+
|
99 |
+
output_dir = self.body['test'].get('output_dir', None)
|
100 |
+
if output_dir is None:
|
101 |
+
raise ValueError('No output_dir in test config')
|
102 |
+
use_pca = self.body['test'].get('n_pca', -1) >= 1
|
103 |
+
if use_pca:
|
104 |
+
output_dir += '/pca_%d_sigma_%.2f' % (self.body['test'].get('n_pca', -1), float(self.body['test'].get('sigma_pca', 1.)))
|
105 |
+
else:
|
106 |
+
output_dir += '/vanilla'
|
107 |
+
print('# Output dir: \033[1;31m%s\033[0m' % output_dir)
|
108 |
+
|
109 |
+
os.makedirs(output_dir + '/live_skeleton', exist_ok = True)
|
110 |
+
os.makedirs(output_dir + '/rgb_map', exist_ok = True)
|
111 |
+
os.makedirs(output_dir + '/rgb_map_wo_hand', exist_ok = True)
|
112 |
+
os.makedirs(output_dir + '/torso_map', exist_ok = True)
|
113 |
+
os.makedirs(output_dir + '/mask_map', exist_ok = True)
|
114 |
+
os.makedirs(output_dir + '/posed_gaussians', exist_ok = True)
|
115 |
+
os.makedirs(output_dir + '/posed_params', exist_ok = True)
|
116 |
+
os.makedirs(output_dir + '/full_body_mask', exist_ok = True)
|
117 |
+
os.makedirs(output_dir + '/hand_only_mask', exist_ok = True)
|
118 |
+
|
119 |
+
geo_renderer = None
|
120 |
+
item_0 = self.dataset.getitem(0, training = False)
|
121 |
+
object_center = item_0['live_bounds'].mean(0)
|
122 |
+
global_orient = item_0['global_orient'].cpu().numpy() if isinstance(item_0['global_orient'], torch.Tensor) else item_0['global_orient']
|
123 |
+
|
124 |
+
# set x and z to 0
|
125 |
+
global_orient[0] = 0
|
126 |
+
global_orient[2] = 0
|
127 |
+
|
128 |
+
global_orient = cv.Rodrigues(global_orient)[0]
|
129 |
+
time_start = torch.cuda.Event(enable_timing = True)
|
130 |
+
time_start_all = torch.cuda.Event(enable_timing = True)
|
131 |
+
time_end = torch.cuda.Event(enable_timing = True)
|
132 |
+
|
133 |
+
data_num = len(self.dataset)
|
134 |
+
if self.body['test'].get('fix_hand', False):
|
135 |
+
self.avatar_net.generate_mean_hands()
|
136 |
+
log_time = False
|
137 |
+
extr_list = []
|
138 |
+
intr_list = []
|
139 |
+
img_h_list = []
|
140 |
+
img_w_list = []
|
141 |
+
|
142 |
+
|
143 |
+
for idx in tqdm(range(data_num), desc = 'Rendering avatars...'):
|
144 |
+
if log_time:
|
145 |
+
time_start.record()
|
146 |
+
time_start_all.record()
|
147 |
+
|
148 |
+
img_scale = self.body['test'].get('img_scale', 1.0)
|
149 |
+
view_setting = self.body['test'].get('view_setting', 'free')
|
150 |
+
if view_setting == 'camera':
|
151 |
+
# training view setting
|
152 |
+
cam_id = self.body['test']['render_view_idx']
|
153 |
+
intr = self.dataset.intr_mats[cam_id].copy()
|
154 |
+
intr[:2] *= img_scale
|
155 |
+
extr = self.dataset.extr_mats[cam_id].copy()
|
156 |
+
img_h, img_w = int(self.dataset.img_heights[cam_id] * img_scale), int(self.dataset.img_widths[cam_id] * img_scale)
|
157 |
+
elif view_setting.startswith('free'):
|
158 |
+
# free view setting
|
159 |
+
# frame_num_per_circle = 360
|
160 |
+
# print(self.opt['test'].get('global_orient', False))
|
161 |
+
frame_num_per_circle = 360
|
162 |
+
rot_Y = (idx % frame_num_per_circle) / float(frame_num_per_circle) * 2 * np.pi
|
163 |
+
|
164 |
+
extr = visualize_util.calc_free_mv(object_center,
|
165 |
+
tar_pos = np.array([0, 0, 2.5]),
|
166 |
+
rot_Y = rot_Y,
|
167 |
+
rot_X = 0.3 if view_setting.endswith('bird') else 0.,
|
168 |
+
global_orient = global_orient if self.body['test'].get('global_orient', False) else None)
|
169 |
+
intr = np.array([[1100, 0, 512], [0, 1100, 512], [0, 0, 1]], np.float32)
|
170 |
+
intr[:2] *= img_scale
|
171 |
+
img_h = int(1024 * img_scale)
|
172 |
+
img_w = int(1024 * img_scale)
|
173 |
+
|
174 |
+
extr_list.append(extr)
|
175 |
+
intr_list.append(intr)
|
176 |
+
img_h_list.append(img_h)
|
177 |
+
img_w_list.append(img_w)
|
178 |
+
|
179 |
+
elif view_setting.startswith('degree120'):
|
180 |
+
print('we render 120 degree')
|
181 |
+
# +- 60 degree
|
182 |
+
frame_per_cycle = 480
|
183 |
+
max_degree = 60
|
184 |
+
frame_half_cycle = frame_per_cycle // 2
|
185 |
+
if idx%frame_per_cycle < frame_per_cycle/2:
|
186 |
+
rot_Y = -max_degree + (2 * max_degree / frame_half_cycle) * (idx%frame_half_cycle)
|
187 |
+
# rot_Y = (idx % frame_per_60) / float(frame_per_60) * 2 * np.pi
|
188 |
+
else:
|
189 |
+
rot_Y = max_degree - (2 * max_degree / frame_half_cycle) * (idx%frame_half_cycle)
|
190 |
+
|
191 |
+
# to radian
|
192 |
+
rot_Y = rot_Y * np.pi / 180
|
193 |
+
if rot_Y<0:
|
194 |
+
rot_Y = rot_Y + 2 * np.pi
|
195 |
+
# print('rot_Y: ', rot_Y)
|
196 |
+
extr = visualize_util.calc_free_mv(object_center,
|
197 |
+
tar_pos = np.array([0, 0, 2.5]),
|
198 |
+
rot_Y = rot_Y,
|
199 |
+
rot_X = 0.3 if view_setting.endswith('bird') else 0.,
|
200 |
+
global_orient = global_orient if self.body['test'].get('global_orient', False) else None)
|
201 |
+
intr = np.array([[1100, 0, 512], [0, 1100, 512], [0, 0, 1]], np.float32)
|
202 |
+
intr[:2] *= img_scale
|
203 |
+
img_h = int(1024 * img_scale)
|
204 |
+
img_w = int(1024 * img_scale)
|
205 |
+
|
206 |
+
extr_list.append(extr)
|
207 |
+
intr_list.append(intr)
|
208 |
+
img_h_list.append(img_h)
|
209 |
+
img_w_list.append(img_w)
|
210 |
+
|
211 |
+
elif view_setting.startswith('degree90'):
|
212 |
+
print('we render 90 degree')
|
213 |
+
# +- 60 degree
|
214 |
+
frame_per_cycle = 360
|
215 |
+
max_degree = 45
|
216 |
+
frame_half_cycle = frame_per_cycle // 2
|
217 |
+
if idx%frame_per_cycle < frame_per_cycle/2:
|
218 |
+
rot_Y = -max_degree + (2 * max_degree / frame_half_cycle) * (idx%frame_half_cycle)
|
219 |
+
# rot_Y = (idx % frame_per_60) / float(frame_per_60) * 2 * np.pi
|
220 |
+
else:
|
221 |
+
rot_Y = max_degree - (2 * max_degree / frame_half_cycle) * (idx%frame_half_cycle)
|
222 |
+
|
223 |
+
# to radian
|
224 |
+
rot_Y = rot_Y * np.pi / 180
|
225 |
+
if rot_Y<0:
|
226 |
+
rot_Y = rot_Y + 2 * np.pi
|
227 |
+
# print('rot_Y: ', rot_Y)
|
228 |
+
extr = visualize_util.calc_free_mv(object_center,
|
229 |
+
tar_pos = np.array([0, 0, 2.5]),
|
230 |
+
rot_Y = rot_Y,
|
231 |
+
rot_X = 0.3 if view_setting.endswith('bird') else 0.,
|
232 |
+
global_orient = global_orient if self.body['test'].get('global_orient', False) else None)
|
233 |
+
intr = np.array([[1100, 0, 512], [0, 1100, 512], [0, 0, 1]], np.float32)
|
234 |
+
intr[:2] *= img_scale
|
235 |
+
img_h = int(1024 * img_scale)
|
236 |
+
img_w = int(1024 * img_scale)
|
237 |
+
|
238 |
+
extr_list.append(extr)
|
239 |
+
intr_list.append(intr)
|
240 |
+
img_h_list.append(img_h)
|
241 |
+
img_w_list.append(img_w)
|
242 |
+
|
243 |
+
|
244 |
+
elif view_setting.startswith('front'):
|
245 |
+
# front view setting
|
246 |
+
extr = visualize_util.calc_free_mv(object_center,
|
247 |
+
tar_pos = np.array([0, 0, 2.5]),
|
248 |
+
rot_Y = 0.,
|
249 |
+
rot_X = 0.3 if view_setting.endswith('bird') else 0.,
|
250 |
+
global_orient = global_orient if self.body['test'].get('global_orient', False) else None)
|
251 |
+
intr = np.array([[1100, 0, 512], [0, 1100, 512], [0, 0, 1]], np.float32)
|
252 |
+
intr[:2] *= img_scale
|
253 |
+
img_h = int(1024 * img_scale)
|
254 |
+
img_w = int(1024 * img_scale)
|
255 |
+
|
256 |
+
extr_list.append(extr)
|
257 |
+
intr_list.append(intr)
|
258 |
+
img_h_list.append(img_h)
|
259 |
+
img_w_list.append(img_w)
|
260 |
+
|
261 |
+
# print('extr: ', extr)
|
262 |
+
# print('intr: ', intr)
|
263 |
+
# print('img_h: ', img_h)
|
264 |
+
# print('img_w: ', img_w)
|
265 |
+
# exit()
|
266 |
+
|
267 |
+
|
268 |
+
|
269 |
+
elif view_setting.startswith('back'):
|
270 |
+
# back view setting
|
271 |
+
extr = visualize_util.calc_free_mv(object_center,
|
272 |
+
tar_pos = np.array([0, 0, 2.5]),
|
273 |
+
rot_Y = np.pi,
|
274 |
+
rot_X = 0.5 * np.pi / 4. if view_setting.endswith('bird') else 0.,
|
275 |
+
global_orient = global_orient if self.body['test'].get('global_orient', False) else None)
|
276 |
+
intr = np.array([[1100, 0, 512], [0, 1100, 512], [0, 0, 1]], np.float32)
|
277 |
+
intr[:2] *= img_scale
|
278 |
+
img_h = int(1024 * img_scale)
|
279 |
+
img_w = int(1024 * img_scale)
|
280 |
+
elif view_setting.startswith('moving'):
|
281 |
+
# moving camera setting
|
282 |
+
extr = visualize_util.calc_free_mv(object_center,
|
283 |
+
# tar_pos = np.array([0, 0, 3.0]),
|
284 |
+
# rot_Y = -0.3,
|
285 |
+
tar_pos = np.array([0, 0, 2.5]),
|
286 |
+
rot_Y = 0.,
|
287 |
+
rot_X = 0.3 if view_setting.endswith('bird') else 0.,
|
288 |
+
global_orient = global_orient if self.body['test'].get('global_orient', False) else None)
|
289 |
+
intr = np.array([[1100, 0, 512], [0, 1100, 512], [0, 0, 1]], np.float32)
|
290 |
+
intr[:2] *= img_scale
|
291 |
+
img_h = int(1024 * img_scale)
|
292 |
+
img_w = int(1024 * img_scale)
|
293 |
+
elif view_setting.startswith('cano'):
|
294 |
+
cano_center = self.dataset.cano_bounds.mean(0)
|
295 |
+
extr = np.identity(4, np.float32)
|
296 |
+
extr[:3, 3] = -cano_center
|
297 |
+
rot_x = np.identity(4, np.float32)
|
298 |
+
rot_x[:3, :3] = cv.Rodrigues(np.array([np.pi, 0, 0], np.float32))[0]
|
299 |
+
extr = rot_x @ extr
|
300 |
+
f_len = 5000
|
301 |
+
extr[2, 3] += f_len / 512
|
302 |
+
intr = np.array([[f_len, 0, 512], [0, f_len, 512], [0, 0, 1]], np.float32)
|
303 |
+
# item = self.dataset.getitem(idx,
|
304 |
+
# training = False,
|
305 |
+
# extr = extr,
|
306 |
+
# intr = intr,
|
307 |
+
# img_w = 1024,
|
308 |
+
# img_h = 1024)
|
309 |
+
img_w, img_h = 1024, 1024
|
310 |
+
# item['live_smpl_v'] = item['cano_smpl_v']
|
311 |
+
# item['cano2live_jnt_mats'] = torch.eye(4, dtype = torch.float32)[None].expand(item['cano2live_jnt_mats'].shape[0], -1, -1)
|
312 |
+
# item['live_bounds'] = item['cano_bounds']
|
313 |
+
else:
|
314 |
+
raise ValueError('Invalid view setting for animation!')
|
315 |
+
|
316 |
+
|
317 |
+
self.dump_renderer_info(output_dir, extr_list, intr_list, img_h_list, img_w_list)
|
318 |
+
# also save the extr and intr and img_h and img_w to json
|
319 |
+
camera_info = []
|
320 |
+
for i in range(len(extr_list)):
|
321 |
+
camera = {}
|
322 |
+
camera['extr'] = extr_list[i].tolist()
|
323 |
+
camera['intr'] = intr_list[i].tolist()
|
324 |
+
camera['img_h'] = img_h_list[i]
|
325 |
+
camera['img_w'] = img_w_list[i]
|
326 |
+
camera_info.append(camera)
|
327 |
+
with open(os.path.join(output_dir, 'camera_info.json'), 'w') as fp:
|
328 |
+
json.dump(camera_info, fp)
|
329 |
+
|
330 |
+
|
331 |
+
getitem_func = self.dataset.getitem_fast if hasattr(self.dataset, 'getitem_fast') else self.dataset.getitem
|
332 |
+
item = getitem_func(
|
333 |
+
idx,
|
334 |
+
training = False,
|
335 |
+
extr = extr,
|
336 |
+
intr = intr,
|
337 |
+
img_w = img_w,
|
338 |
+
img_h = img_h
|
339 |
+
)
|
340 |
+
items = to_cuda(item, add_batch = False)
|
341 |
+
|
342 |
+
if view_setting.startswith('moving') or view_setting == 'free_moving':
|
343 |
+
current_center = items['live_bounds'].cpu().numpy().mean(0)
|
344 |
+
delta = current_center - object_center
|
345 |
+
|
346 |
+
object_center[0] += delta[0]
|
347 |
+
# object_center[1] += delta[1]
|
348 |
+
# object_center[2] += delta[2]
|
349 |
+
|
350 |
+
if log_time:
|
351 |
+
time_end.record()
|
352 |
+
torch.cuda.synchronize()
|
353 |
+
print('Loading data costs %.4f secs' % (time_start.elapsed_time(time_end) / 1000.))
|
354 |
+
time_start.record()
|
355 |
+
|
356 |
+
if self.body['test'].get('render_skeleton', False):
|
357 |
+
from AnimatableGaussians.utils.visualize_skeletons import construct_skeletons
|
358 |
+
skel_vertices, skel_faces = construct_skeletons(item['joints'].cpu().numpy(), item['kin_parent'].cpu().numpy())
|
359 |
+
skel_mesh = trimesh.Trimesh(skel_vertices, skel_faces, process = False)
|
360 |
+
|
361 |
+
if geo_renderer is None:
|
362 |
+
geo_renderer = Renderer(item['img_w'], item['img_h'], shader_name = 'phong_geometry', bg_color = (1, 1, 1))
|
363 |
+
extr, intr = item['extr'], item['intr']
|
364 |
+
geo_renderer.set_camera(extr, intr)
|
365 |
+
geo_renderer.set_model(skel_vertices[skel_faces.reshape(-1)], skel_mesh.vertex_normals.astype(np.float32)[skel_faces.reshape(-1)])
|
366 |
+
skel_img = geo_renderer.render()[:, :, :3]
|
367 |
+
skel_img = (skel_img * 255).astype(np.uint8)
|
368 |
+
cv.imwrite(output_dir + '/live_skeleton/%08d.jpg' % item['data_idx'], skel_img)
|
369 |
+
|
370 |
+
if log_time:
|
371 |
+
time_end.record()
|
372 |
+
torch.cuda.synchronize()
|
373 |
+
print('Rendering skeletons costs %.4f secs' % (time_start.elapsed_time(time_end) / 1000.))
|
374 |
+
time_start.record()
|
375 |
+
|
376 |
+
if 'smpl_pos_map' not in items:
|
377 |
+
self.avatar_net.get_pose_map(items)
|
378 |
+
|
379 |
+
# pca
|
380 |
+
if use_pca:
|
381 |
+
mask = training_dataset.pos_map_mask
|
382 |
+
live_pos_map = items['smpl_pos_map'].permute(1, 2, 0).cpu().numpy()
|
383 |
+
front_live_pos_map, back_live_pos_map = np.split(live_pos_map, [3], 2)
|
384 |
+
pose_conds = front_live_pos_map[mask]
|
385 |
+
new_pose_conds = training_dataset.transform_pca(pose_conds, sigma_pca = float(self.body['test'].get('sigma_pca', 2.)))
|
386 |
+
front_live_pos_map[mask] = new_pose_conds
|
387 |
+
live_pos_map = np.concatenate([front_live_pos_map, back_live_pos_map], 2)
|
388 |
+
items.update({
|
389 |
+
'smpl_pos_map_pca': torch.from_numpy(live_pos_map).to(self.device).permute(2, 0, 1)
|
390 |
+
})
|
391 |
+
|
392 |
+
if log_time:
|
393 |
+
time_end.record()
|
394 |
+
torch.cuda.synchronize()
|
395 |
+
print('Rendering pose conditions costs %.4f secs' % (time_start.elapsed_time(time_end) / 1000.))
|
396 |
+
time_start.record()
|
397 |
+
|
398 |
+
output = self.avatar_net.render(items, bg_color = self.bg_color, use_pca = use_pca)
|
399 |
+
output_wo_hand = self.avatar_net.render_wo_hand(items, bg_color = self.bg_color, use_pca = use_pca)
|
400 |
+
mask_output = self.avatar_net.render_mask(items, bg_color = self.bg_color, use_pca = use_pca)
|
401 |
+
|
402 |
+
if log_time:
|
403 |
+
time_end.record()
|
404 |
+
torch.cuda.synchronize()
|
405 |
+
print('Rendering avatar costs %.4f secs' % (time_start.elapsed_time(time_end) / 1000.))
|
406 |
+
time_start.record()
|
407 |
+
|
408 |
+
if 'rgb_map' in output_wo_hand:
|
409 |
+
rgb_map_wo_hand = output_wo_hand['rgb_map']
|
410 |
+
|
411 |
+
if 'full_body_rgb_map' in mask_output:
|
412 |
+
os.makedirs(output_dir + '/full_body_mask', exist_ok = True)
|
413 |
+
full_body_mask = mask_output['full_body_rgb_map']
|
414 |
+
full_body_mask.clip_(0., 1.)
|
415 |
+
full_body_mask = (full_body_mask * 255).to(torch.uint8)
|
416 |
+
cv.imwrite(output_dir + '/full_body_mask/%08d.png' % item['data_idx'], full_body_mask.cpu().numpy())
|
417 |
+
|
418 |
+
if 'hand_only_rgb_map' in mask_output:
|
419 |
+
os.makedirs(output_dir + '/hand_only_mask', exist_ok = True)
|
420 |
+
hand_only_mask = mask_output['hand_only_rgb_map']
|
421 |
+
hand_only_mask.clip_(0., 1.)
|
422 |
+
hand_only_mask = (hand_only_mask * 255).to(torch.uint8)
|
423 |
+
cv.imwrite(output_dir + '/hand_only_mask/%08d.png' % item['data_idx'], hand_only_mask.cpu().numpy())
|
424 |
+
|
425 |
+
if 'full_body_rgb_map' in mask_output and 'hand_only_rgb_map' in mask_output:
|
426 |
+
# mask only covers hand
|
427 |
+
body_red_mask = (mask_output['full_body_rgb_map'] - torch.tensor([1., 0., 0.], device = mask_output['full_body_rgb_map'].device))
|
428 |
+
body_red_mask = (body_red_mask*body_red_mask).sum(dim=2) < 0.01 # need save
|
429 |
+
|
430 |
+
hand_red_mask = (mask_output['hand_only_rgb_map'] - torch.tensor([1., 0., 0.], device = mask_output['hand_only_rgb_map'].device))
|
431 |
+
hand_red_mask = (hand_red_mask*hand_red_mask).sum(dim=2) < 0.01
|
432 |
+
|
433 |
+
if_mask_r_hand = abs(body_red_mask.sum() - hand_red_mask.sum()) / hand_red_mask.sum() > 0.95
|
434 |
+
if_mask_r_hand = if_mask_r_hand.cpu().numpy()
|
435 |
+
|
436 |
+
body_blue_mask = (mask_output['full_body_rgb_map'] - torch.tensor([0., 0., 1.], device = mask_output['full_body_rgb_map'].device))
|
437 |
+
body_blue_mask = (body_blue_mask*body_blue_mask).sum(dim=2) < 0.01 # need save
|
438 |
+
|
439 |
+
hand_blue_mask = (mask_output['hand_only_rgb_map'] - torch.tensor([0., 0., 1.], device = mask_output['hand_only_rgb_map'].device))
|
440 |
+
hand_blue_mask = (hand_blue_mask*hand_blue_mask).sum(dim=2) < 0.01
|
441 |
+
|
442 |
+
if_mask_l_hand = abs(body_blue_mask.sum() - hand_blue_mask.sum()) / hand_blue_mask.sum() > 0.95
|
443 |
+
if_mask_l_hand = if_mask_l_hand.cpu().numpy()
|
444 |
+
|
445 |
+
# 保存左右手被遮挡部分的mask
|
446 |
+
red_mask = hand_red_mask ^ (hand_red_mask & body_red_mask)
|
447 |
+
blue_mask = hand_blue_mask ^ (hand_blue_mask & body_blue_mask)
|
448 |
+
all_mask = red_mask | blue_mask
|
449 |
+
|
450 |
+
# now save 3 mask to 3 folders
|
451 |
+
os.makedirs(output_dir + '/hand_mask', exist_ok = True)
|
452 |
+
os.makedirs(output_dir + '/r_hand_mask', exist_ok = True)
|
453 |
+
os.makedirs(output_dir + '/l_hand_mask', exist_ok = True)
|
454 |
+
os.makedirs(output_dir + '/hand_visual', exist_ok = True)
|
455 |
+
|
456 |
+
all_mask = (all_mask * 255).to(torch.uint8)
|
457 |
+
cv.imwrite(output_dir + '/hand_mask/%08d.png' % item['data_idx'], all_mask.cpu().numpy())
|
458 |
+
r_hand_mask = (body_red_mask * 255).to(torch.uint8)
|
459 |
+
cv.imwrite(output_dir + '/r_hand_mask/%08d.png' % item['data_idx'], r_hand_mask.cpu().numpy())
|
460 |
+
l_hand_mask = (body_blue_mask * 255).to(torch.uint8)
|
461 |
+
cv.imwrite(output_dir + '/l_hand_mask/%08d.png' % item['data_idx'], l_hand_mask.cpu().numpy())
|
462 |
+
hand_visual = [if_mask_r_hand, if_mask_l_hand]
|
463 |
+
# save to npy
|
464 |
+
with open(output_dir + '/hand_visual/%08d.npy' % item['data_idx'], 'wb') as f:
|
465 |
+
np.save(f, hand_visual)
|
466 |
+
|
467 |
+
|
468 |
+
# now build sleeve_mask
|
469 |
+
if 'left_hand_rgb_map' in mask_output and 'right_hand_rgb_map' in mask_output:
|
470 |
+
os.makedirs(output_dir + '/left_sleeve_mask', exist_ok = True)
|
471 |
+
os.makedirs(output_dir + '/right_sleeve_mask', exist_ok = True)
|
472 |
+
|
473 |
+
mask = (r_hand_mask>128) | (l_hand_mask>128)| (all_mask>128)
|
474 |
+
mask = mask.cpu().numpy().astype(np.uint8)
|
475 |
+
# 定义一个结构元素,可以调整其大小以改变膨胀的程度
|
476 |
+
kernel = np.ones((5, 5), np.uint8)
|
477 |
+
# 应用膨胀操作
|
478 |
+
mask = cv.dilate(mask, kernel, iterations=3)
|
479 |
+
mask = torch.tensor(mask).to(self.device)
|
480 |
+
|
481 |
+
left_hand_mask = mask_output['left_hand_rgb_map']
|
482 |
+
left_hand_mask.clip_(0., 1.)
|
483 |
+
# non white part is mask
|
484 |
+
left_hand_mask = (torch.tensor([1., 1., 1.], device = left_hand_mask.device) - left_hand_mask)
|
485 |
+
left_hand_mask = (left_hand_mask*left_hand_mask).sum(dim=2) > 0.01
|
486 |
+
# dele two hand mask
|
487 |
+
left_hand_mask = left_hand_mask & ~mask
|
488 |
+
|
489 |
+
right_hand_mask = mask_output['right_hand_rgb_map']
|
490 |
+
right_hand_mask.clip_(0., 1.)
|
491 |
+
right_hand_mask = (torch.tensor([1., 1., 1.], device = right_hand_mask.device) - right_hand_mask)
|
492 |
+
right_hand_mask = (right_hand_mask*right_hand_mask).sum(dim=2) > 0.01
|
493 |
+
right_hand_mask = right_hand_mask & ~mask
|
494 |
+
|
495 |
+
# save
|
496 |
+
left_hand_mask = (left_hand_mask * 255).to(torch.uint8)
|
497 |
+
cv.imwrite(output_dir + '/left_sleeve_mask/%08d.png' % item['data_idx'], left_hand_mask.cpu().numpy())
|
498 |
+
right_hand_mask = (right_hand_mask * 255).to(torch.uint8)
|
499 |
+
cv.imwrite(output_dir + '/right_sleeve_mask/%08d.png' % item['data_idx'], right_hand_mask.cpu().numpy())
|
500 |
+
|
501 |
+
rgb_map = output['rgb_map']
|
502 |
+
rgb_map.clip_(0., 1.)
|
503 |
+
rgb_map = (rgb_map * 255).to(torch.uint8).cpu().numpy()
|
504 |
+
cv.imwrite(output_dir + '/rgb_map/%08d.jpg' % item['data_idx'], rgb_map)
|
505 |
+
|
506 |
+
# 利用 r_hand_mask 和 l_hand_mask,将wo_hand图像中的mask部分覆盖rgb_map
|
507 |
+
if 'rgb_map' in output_wo_hand and 'full_body_rgb_map' in mask_output and 'hand_only_rgb_map' in mask_output:
|
508 |
+
rgb_map_wo_hand = output_wo_hand['rgb_map']
|
509 |
+
rgb_map_wo_hand.clip_(0., 1.)
|
510 |
+
rgb_map_wo_hand = (rgb_map_wo_hand * 255).to(torch.uint8).cpu().numpy()
|
511 |
+
|
512 |
+
r_mask = (r_hand_mask>128).cpu().numpy()
|
513 |
+
l_mask = (l_hand_mask>128).cpu().numpy()
|
514 |
+
mask = r_mask | l_mask
|
515 |
+
mask = mask.astype(np.uint8)
|
516 |
+
# 定义一个结构元素,可以调整其大小以改变膨胀的程度
|
517 |
+
kernel = np.ones((5, 5), np.uint8)
|
518 |
+
# 应用膨胀操作
|
519 |
+
mask = cv.dilate(mask, kernel, iterations=3)
|
520 |
+
mask = mask.astype(np.bool_)
|
521 |
+
mask = np.expand_dims(mask, axis=2)
|
522 |
+
# print('mask shape: ', mask.shape)
|
523 |
+
import ipdb
|
524 |
+
# ipdb.set_trace()
|
525 |
+
mix = rgb_map_wo_hand.copy() * mask + rgb_map * ~mask
|
526 |
+
cv.imwrite(output_dir + '/rgb_map_wo_hand/%08d.png' % item['data_idx'], mix)
|
527 |
+
|
528 |
+
if 'torso_map' in output:
|
529 |
+
os.makedirs(output_dir + '/torso_map', exist_ok = True)
|
530 |
+
torso_map = output['torso_map'][:, :, 0]
|
531 |
+
torso_map.clip_(0., 1.)
|
532 |
+
torso_map = (torso_map * 255).to(torch.uint8)
|
533 |
+
cv.imwrite(output_dir + '/torso_map/%08d.png' % item['data_idx'], torso_map.cpu().numpy())
|
534 |
+
|
535 |
+
if 'mask_map' in output:
|
536 |
+
os.makedirs(output_dir + '/mask_map', exist_ok = True)
|
537 |
+
mask_map = output['mask_map'][:, :, 0]
|
538 |
+
mask_map.clip_(0., 1.)
|
539 |
+
mask_map = (mask_map * 255).to(torch.uint8)
|
540 |
+
cv.imwrite(output_dir + '/mask_map/%08d.png' % item['data_idx'], mask_map.cpu().numpy())
|
541 |
+
|
542 |
+
if self.body['test'].get('save_tex_map', False):
|
543 |
+
os.makedirs(output_dir + '/cano_tex_map', exist_ok = True)
|
544 |
+
cano_tex_map = output['cano_tex_map']
|
545 |
+
cano_tex_map.clip_(0., 1.)
|
546 |
+
cano_tex_map = (cano_tex_map * 255).to(torch.uint8)
|
547 |
+
cv.imwrite(output_dir + '/cano_tex_map/%08d.png' % item['data_idx'], cano_tex_map.cpu().numpy())
|
548 |
+
|
549 |
+
if self.body['test'].get('save_ply', False):
|
550 |
+
if item['data_idx'] == 0:
|
551 |
+
save_gaussians_as_ply(output_dir + '/posed_gaussians/%08d.ply' % item['data_idx'], output['posed_gaussians'])
|
552 |
+
for k in output['posed_gaussians'].keys():
|
553 |
+
if isinstance(output['posed_gaussians'][k], torch.Tensor):
|
554 |
+
output['posed_gaussians'][k] = output['posed_gaussians'][k].detach().cpu().numpy()
|
555 |
+
np.savez(output_dir + '/posed_gaussians/%08d.npz' % item['data_idx'], **output['posed_gaussians'])
|
556 |
+
np.savez(output_dir + ('/posed_params/%08d.npz' % item['data_idx']),
|
557 |
+
betas=training_dataset.smpl_data['betas'].reshape([-1]).detach().cpu().numpy(),
|
558 |
+
global_orient=item['global_orient'].reshape([-1]).detach().cpu().numpy(),
|
559 |
+
transl=item['transl'].reshape([-1]).detach().cpu().numpy(),
|
560 |
+
body_pose=item['body_pose'].reshape([-1]).detach().cpu().numpy())
|
561 |
+
|
562 |
+
if log_time:
|
563 |
+
time_end.record()
|
564 |
+
torch.cuda.synchronize()
|
565 |
+
print('Saving images costs %.4f secs' % (time_start.elapsed_time(time_end) / 1000.))
|
566 |
+
print('Animating one frame costs %.4f secs' % (time_start_all.elapsed_time(time_end) / 1000.))
|
567 |
+
|
568 |
+
torch.cuda.empty_cache()
|
569 |
+
|
570 |
+
def dump_renderer_info(self, dump_dir, extrs, intrs, img_heights, img_widths):
|
571 |
+
with open(os.path.join(dump_dir, 'cfg_args'), 'w') as fp:
|
572 |
+
outstr = "Namespace(sh_degree=%d, source_path='%s', model_path='%s', images='images', resolution=-1, " \
|
573 |
+
"white_background=False, data_device='cuda', eval=False)" % (
|
574 |
+
3, self.body['train']['data']['data_dir'], dump_dir)
|
575 |
+
fp.write(outstr)
|
576 |
+
with open(os.path.join(dump_dir, 'cameras.json'), 'w') as fp:
|
577 |
+
cam_jsons = []
|
578 |
+
for ci in range(len(extrs)):
|
579 |
+
extr, intr = extrs[ci], intrs[ci]
|
580 |
+
img_h, img_w = img_heights[ci], img_widths[ci]
|
581 |
+
|
582 |
+
w2c = extr
|
583 |
+
c2w = np.linalg.inv(w2c)
|
584 |
+
pos = c2w[:3, 3]
|
585 |
+
rot = c2w[:3, :3]
|
586 |
+
serializable_array_2d = [x.tolist() for x in rot]
|
587 |
+
camera_entry = {
|
588 |
+
'id': ci,
|
589 |
+
'img_name': '%08d' % ci,
|
590 |
+
'width': int(img_w),
|
591 |
+
'height': int(img_h),
|
592 |
+
'position': pos.tolist(),
|
593 |
+
'rotation': serializable_array_2d,
|
594 |
+
'fy': float(intr[1, 1]),
|
595 |
+
'fx': float(intr[0, 0]),
|
596 |
+
}
|
597 |
+
cam_jsons.append(camera_entry)
|
598 |
+
json.dump(cam_jsons, fp)
|
599 |
+
return
|
600 |
+
|
601 |
+
def test_head(self):
|
602 |
+
dataset = ReenactmentDataset(self.head_config.dataset)
|
603 |
+
dataloader = DataLoaderX(dataset, batch_size=1, shuffle=False, pin_memory=True)
|
604 |
+
|
605 |
+
device = torch.device('cuda:%d' % self.head_config.gpu_id)
|
606 |
+
|
607 |
+
gaussianhead_state_dict = torch.load(self.head_config.load_gaussianhead_checkpoint, map_location=lambda storage, loc: storage)
|
608 |
+
gaussianhead = GaussianHeadModule(self.head_config.gaussianheadmodule,
|
609 |
+
xyz=gaussianhead_state_dict['xyz'],
|
610 |
+
feature=gaussianhead_state_dict['feature'],
|
611 |
+
landmarks_3d_neutral=gaussianhead_state_dict['landmarks_3d_neutral']).to(device)
|
612 |
+
gaussianhead.load_state_dict(gaussianhead_state_dict)
|
613 |
+
|
614 |
+
supres = SuperResolutionModule(self.head_config.supresmodule).to(device)
|
615 |
+
supres.load_state_dict(torch.load(self.head_config.load_supres_checkpoint, map_location=lambda storage, loc: storage))
|
616 |
+
|
617 |
+
camera = CameraModule()
|
618 |
+
recorder = ReenactmentRecorder(self.head_config.recorder)
|
619 |
+
|
620 |
+
app = Reenactment(dataloader, gaussianhead, supres, camera, recorder, self.head_config.gpu_id, dataset.freeview)
|
621 |
+
if self.head.offline_rendering_param_fpath is None:
|
622 |
+
app.run(stop_fid=800)
|
623 |
+
else:
|
624 |
+
app.run_for_offline_stitching(self.head.offline_rendering_param_fpath)
|
625 |
+
|
626 |
+
def cal_cat_param(self):
|
627 |
+
calc_offline_rendering_param(
|
628 |
+
self.cat.body_gaussian_root_dir,
|
629 |
+
self.cat.ref_head_gaussian_path,
|
630 |
+
self.cat.ref_head_param_path,
|
631 |
+
self.cat.render_cam_fpath,
|
632 |
+
self.cat.body_head_blending_param_path
|
633 |
+
)
|
634 |
+
|
635 |
+
|
636 |
+
|
637 |
+
|
638 |
+
if __name__ == '__main__':
|
639 |
+
conf = OmegaConf.load('configs/example.yaml')
|
640 |
+
avatar = Avatar(conf)
|
641 |
+
avatar.test_body()
|
642 |
+
# avatar.test_head()
|
calc_offline_rendering_param.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import tqdm
|
3 |
+
import os, glob
|
4 |
+
import json
|
5 |
+
import argparse
|
6 |
+
|
7 |
+
from render_utils.lib.networks.smpl_torch import SmplTorch
|
8 |
+
from render_utils.lib.utils.gaussian_np_utils import load_gaussians_from_ply
|
9 |
+
from render_utils.stitch_body_and_head import load_body_params, load_face_params, get_smpl_verts_and_head_transformation, calc_livehead2livebody
|
10 |
+
|
11 |
+
|
12 |
+
def load_rendering_camera(camera_fpath):
|
13 |
+
with open(camera_fpath, 'r') as fp:
|
14 |
+
camera_data = json.load(fp)
|
15 |
+
camera_data = camera_data[0]
|
16 |
+
image_size = [camera_data['width'], camera_data['height']]
|
17 |
+
cam_f = [camera_data['fx'], camera_data['fy']]
|
18 |
+
cam_pos = np.array(camera_data['position'])
|
19 |
+
cam_rot = np.array(camera_data['rotation']).reshape(3, 3)
|
20 |
+
c2w = np.eye(4)
|
21 |
+
c2w[:3, :3] = cam_rot
|
22 |
+
c2w[:3, 3] = cam_pos
|
23 |
+
cam_extr = np.linalg.inv(c2w)
|
24 |
+
cam_intr = np.eye(3)
|
25 |
+
cam_intr[0, 0] = cam_f[0]
|
26 |
+
cam_intr[1, 1] = cam_f[1]
|
27 |
+
cam_intr[0, 2] = image_size[0] / 2
|
28 |
+
cam_intr[1, 2] = image_size[1] / 2
|
29 |
+
return cam_extr, cam_intr, image_size
|
30 |
+
|
31 |
+
def load_camera_list(camera_fpath):
|
32 |
+
with open(camera_fpath, 'r') as fp:
|
33 |
+
camera_data = json.load(fp)
|
34 |
+
image_size = [camera_data[0]['width'], camera_data[0]['height']]
|
35 |
+
cam_list = []
|
36 |
+
for cam in camera_data:
|
37 |
+
cam_f = [cam['fx'], cam['fy']]
|
38 |
+
cam_pos = np.array(cam['position'])
|
39 |
+
cam_rot = np.array(cam['rotation']).reshape(3, 3)
|
40 |
+
c2w = np.eye(4)
|
41 |
+
c2w[:3, :3] = cam_rot
|
42 |
+
c2w[:3, 3] = cam_pos
|
43 |
+
cam_extr = np.linalg.inv(c2w)
|
44 |
+
cam_intr = np.eye(3)
|
45 |
+
cam_intr[0, 0] = cam_f[0]
|
46 |
+
cam_intr[1, 1] = cam_f[1]
|
47 |
+
cam_intr[0, 2] = image_size[0] / 2
|
48 |
+
cam_intr[1, 2] = image_size[1] / 2
|
49 |
+
cam_list.append((cam_extr, cam_intr))
|
50 |
+
return cam_list, image_size
|
51 |
+
|
52 |
+
def load_camera_data(cam):
|
53 |
+
image_size = [cam['width'], cam['height']]
|
54 |
+
cam_f = [cam['fx'], cam['fy']]
|
55 |
+
cam_pos = np.array(cam['position'])
|
56 |
+
cam_rot = np.array(cam['rotation']).reshape(3, 3)
|
57 |
+
c2w = np.eye(4)
|
58 |
+
c2w[:3, :3] = cam_rot
|
59 |
+
c2w[:3, 3] = cam_pos
|
60 |
+
cam_extr = np.linalg.inv(c2w)
|
61 |
+
cam_intr = np.eye(3)
|
62 |
+
cam_intr[0, 0] = cam_f[0]
|
63 |
+
cam_intr[1, 1] = cam_f[1]
|
64 |
+
cam_intr[0, 2] = image_size[0] / 2
|
65 |
+
cam_intr[1, 2] = image_size[1] / 2
|
66 |
+
|
67 |
+
return (cam_extr, cam_intr), image_size
|
68 |
+
|
69 |
+
def calc_offline_rendering_param(
|
70 |
+
body_gaussian_root_dir, ref_head_gaussian_path, ref_head_param_path, render_cam_fpath,
|
71 |
+
body_head_blending_param_path):
|
72 |
+
body_param_flist = sorted(glob.glob(os.path.join(body_gaussian_root_dir, 'posed_params/*.npz')))
|
73 |
+
|
74 |
+
head_gaussians = load_gaussians_from_ply(ref_head_gaussian_path)
|
75 |
+
head_pose, head_scale, id_coeff, exp_coeff = load_face_params(ref_head_param_path)
|
76 |
+
# cam_extr_body, cam_intr_body, image_size = load_rendering_camera(render_cam_fpath)
|
77 |
+
cam_list, image_size = load_camera_list(render_cam_fpath)
|
78 |
+
|
79 |
+
body_head_blending_params = np.load(body_head_blending_param_path)
|
80 |
+
smplx_to_faceverse = body_head_blending_params['smplx_to_faceverse']
|
81 |
+
residual_transf = body_head_blending_params['residual_transf']
|
82 |
+
body_nonface_mask = body_head_blending_params['body_nonface_mask']
|
83 |
+
head_nonface_mask = body_head_blending_params['head_nonface_mask']
|
84 |
+
head_facial_idx = body_head_blending_params['head_facial_idx']
|
85 |
+
body_facial_idx = body_head_blending_params['body_facial_idx']
|
86 |
+
head_body_corr_idx = body_head_blending_params['head_body_corr_idx']
|
87 |
+
head_color_bw = body_head_blending_params['head_color_bw']
|
88 |
+
color_transfer = body_head_blending_params['color_transfer']
|
89 |
+
|
90 |
+
smpl = SmplTorch(model_file='./AnimatableGaussians/smpl_files/smplx/SMPLX_NEUTRAL.npz')
|
91 |
+
|
92 |
+
head_cam_extr = []
|
93 |
+
head_cam_intr = []
|
94 |
+
head_cam_intr_zoom = []
|
95 |
+
head_zoom_center = []
|
96 |
+
head_zoom_scale = []
|
97 |
+
|
98 |
+
for i, body_param_fpath in enumerate(tqdm.tqdm(body_param_flist)):
|
99 |
+
global_orient, transl, body_pose, betas = load_body_params(body_param_fpath)
|
100 |
+
# body_gaussians = load_gaussians_from_ply(body_gaussian_fpath)
|
101 |
+
|
102 |
+
smpl_verts, head_joint_transfmat = get_smpl_verts_and_head_transformation(
|
103 |
+
smpl, global_orient, body_pose, transl, betas)
|
104 |
+
livehead2livebody = calc_livehead2livebody(head_pose, smplx_to_faceverse, head_joint_transfmat)
|
105 |
+
total_transf = np.matmul(livehead2livebody, residual_transf)
|
106 |
+
|
107 |
+
cam_extr = np.matmul(cam_list[i][0], total_transf)
|
108 |
+
cam_intr = np.copy(cam_list[i][1])
|
109 |
+
|
110 |
+
head_cam_extr.append(cam_extr)
|
111 |
+
head_cam_intr.append(cam_intr)
|
112 |
+
|
113 |
+
pts = np.copy(head_gaussians.xyz)
|
114 |
+
pts_proj = np.matmul(pts, cam_extr[:3, :3].transpose()) + cam_extr[:3, 3]
|
115 |
+
pts_proj = np.matmul(pts_proj, cam_intr.transpose())
|
116 |
+
pts_proj = pts_proj / pts_proj[:, 2:]
|
117 |
+
# pts_proj = np.int32(np.round(pts_proj[:, :2]))
|
118 |
+
|
119 |
+
# img = np.zeros([image_size[1], image_size[0], 3], dtype=np.uint8)
|
120 |
+
# for p in pts_proj[::50]:
|
121 |
+
# p = np.clip(p, 0, image_size[0] - 1)
|
122 |
+
# cv.circle(img, (int(p[0]), int(p[1])), 2, (0, 255, 0), -1)
|
123 |
+
# cv.imshow('img', img)
|
124 |
+
|
125 |
+
pts_min, pts_max = np.min(pts_proj, axis=0), np.max(pts_proj, axis=0)
|
126 |
+
pts_center = (pts_min + pts_max) // 2
|
127 |
+
pts_size = np.max(pts_max - pts_min)
|
128 |
+
tgt_pts_size = 350
|
129 |
+
tgt_image_size = 512
|
130 |
+
zoom_scale = tgt_pts_size / pts_size
|
131 |
+
cam_intr_zoom = np.copy(cam_intr)
|
132 |
+
cam_intr_zoom[:2] *= zoom_scale
|
133 |
+
cam_intr_zoom[0, 2] = cam_intr_zoom[0, 2] - (pts_center[0]*zoom_scale - tgt_image_size/2)
|
134 |
+
cam_intr_zoom[1, 2] = cam_intr_zoom[1, 2] - (pts_center[1]*zoom_scale - tgt_image_size/2)
|
135 |
+
head_cam_intr_zoom.append(cam_intr_zoom)
|
136 |
+
head_zoom_center.append(pts_center)
|
137 |
+
head_zoom_scale.append(zoom_scale)
|
138 |
+
|
139 |
+
# pts_proj = np.matmul(pts, cam_extr[:3, :3].transpose()) + cam_extr[:3, 3]
|
140 |
+
# pts_proj = np.matmul(pts_proj, cam_intr_zoom.transpose())
|
141 |
+
# pts_proj = pts_proj / pts_proj[:, 2:]
|
142 |
+
# pts_proj = np.int32(np.round(pts_proj[:, :2]))
|
143 |
+
# img = np.zeros([512, 512, 3], dtype=np.uint8)
|
144 |
+
# for p in pts_proj[::50]:
|
145 |
+
# p = np.clip(p, 0, image_size[0] - 1)
|
146 |
+
# cv.circle(img, (int(p[0]), int(p[1])), 2, (0, 255, 0), -1)
|
147 |
+
# cv.imshow('img_zoom', img)
|
148 |
+
# cv.waitKey()
|
149 |
+
|
150 |
+
np.savez(os.path.join(os.path.dirname(body_head_blending_param_path), 'head_zoomin_render_param.npz'),
|
151 |
+
cam_extr=head_cam_extr, cam_intr=head_cam_intr, image_size=image_size,
|
152 |
+
cam_intr_zoom=head_cam_intr_zoom, zoom_image_size=[tgt_image_size, tgt_image_size],
|
153 |
+
zoom_center=head_zoom_center,
|
154 |
+
zoom_scale=head_zoom_scale,
|
155 |
+
head_pose=head_pose, head_scale=head_scale, head_color_bw=head_color_bw)
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
+
if __name__ == '__main__':
|
160 |
+
parser = argparse.ArgumentParser()
|
161 |
+
|
162 |
+
"""
|
163 |
+
body_gaussian_root_dir, ref_head_gaussian_path, ref_head_param_path, render_cam_fpath,
|
164 |
+
body_head_blending_param_path
|
165 |
+
"""
|
166 |
+
parser.add_argument('--body_gaussian_root_dir', type=str)
|
167 |
+
parser.add_argument('--ref_head_gaussian_path', type=str)
|
168 |
+
parser.add_argument('--ref_head_param_path', type=str)
|
169 |
+
parser.add_argument('--render_cam_fpath', type=str)
|
170 |
+
parser.add_argument('--body_head_blending_param_path', type=str)
|
171 |
+
args = parser.parse_args()
|
172 |
+
calc_offline_rendering_param(
|
173 |
+
args.body_gaussian_root_dir,
|
174 |
+
args.ref_head_gaussian_path,
|
175 |
+
args.ref_head_param_path,
|
176 |
+
args.render_cam_fpath,
|
177 |
+
args.body_head_blending_param_path
|
178 |
+
)
|
179 |
+
|
180 |
+
"""
|
181 |
+
python calc_offline_rendering_param.py ^
|
182 |
+
--body_gaussian_root_dir ./AnimatableGaussians/test_results/huawei0425/checkpoints/AMASS__test_poses_ours_front_view/batch_750000/pca_20_sigma_2.00/ ^
|
183 |
+
--ref_head_gaussian_path ./Gaussian-Head-Avatar/results/reenactment/huawei0425_self/posed_gaussians/000000.ply ^
|
184 |
+
--ref_head_param_path ./Gaussian-Head-Avatar/results/reenactment/huawei0425_self/params/000000_param.npz ^
|
185 |
+
--render_cam_fpath ./AnimatableGaussians/test_results/huawei0425/checkpoints/AMASS__test_poses_ours_front_view/batch_750000/pca_20_sigma_2.00/cameras.json ^
|
186 |
+
--body_head_blending_param_path ./data/body_face_stitching_sr/body_head_blending_param.npz
|
187 |
+
|
188 |
+
"""
|
configs/example.yaml
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
trial_name: "body_head_avatar"
|
2 |
+
device: cuda
|
3 |
+
animatablegaussians:
|
4 |
+
train:
|
5 |
+
dataset: MvRgbDatasetAvatarReX
|
6 |
+
data:
|
7 |
+
subject_name: 1007_slow10
|
8 |
+
data_dir: ./checkpoints/pos_map_ys/body_mix
|
9 |
+
frame_range: &id001
|
10 |
+
- 0
|
11 |
+
- 200
|
12 |
+
- 1
|
13 |
+
used_cam_ids:
|
14 |
+
- 0
|
15 |
+
- 1
|
16 |
+
- 2
|
17 |
+
- 3
|
18 |
+
- 4
|
19 |
+
- 5
|
20 |
+
- 6
|
21 |
+
- 8
|
22 |
+
- 9
|
23 |
+
- 10
|
24 |
+
- 11
|
25 |
+
- 12
|
26 |
+
- 14
|
27 |
+
- 15
|
28 |
+
load_smpl_pos_map: true
|
29 |
+
pretrained_dir: null
|
30 |
+
net_ckpt_dir: ./results/huawei0425/avatar2
|
31 |
+
prev_ckpt: null
|
32 |
+
ckpt_interval:
|
33 |
+
epoch: 10
|
34 |
+
batch: 50000
|
35 |
+
eval_interval: 1000
|
36 |
+
eval_training_ids:
|
37 |
+
- 190
|
38 |
+
- 7
|
39 |
+
eval_testing_ids:
|
40 |
+
- 354
|
41 |
+
- 7
|
42 |
+
eval_img_factor: 1.0
|
43 |
+
lr_init: 0.0005
|
44 |
+
loss_weight:
|
45 |
+
l1: 1.0
|
46 |
+
lpips: 0.1
|
47 |
+
offset: 0.005
|
48 |
+
finetune_color: false
|
49 |
+
batch_size: 1
|
50 |
+
num_workers: 8
|
51 |
+
random_bg_color: true
|
52 |
+
test:
|
53 |
+
output_dir: ./test_results/temp_test
|
54 |
+
dataset: MvRgbDatasetAvatarReX
|
55 |
+
data:
|
56 |
+
data_dir: ./checkpoints/pos_map_ys/body_mix
|
57 |
+
frame_range: [0, 800]
|
58 |
+
subject_name: huawei0425
|
59 |
+
pose_data:
|
60 |
+
data_path: ./test_data/AMASS/1007_train_data_slow10.npz
|
61 |
+
frame_range: [0, 2000]
|
62 |
+
view_setting: degree90
|
63 |
+
render_view_idx: 13
|
64 |
+
global_orient: true
|
65 |
+
img_scale: 2.0
|
66 |
+
save_mesh: false
|
67 |
+
render_skeleton: false
|
68 |
+
save_tex_map: false
|
69 |
+
save_ply: true
|
70 |
+
fix_hand: true
|
71 |
+
fix_hand_id: 23
|
72 |
+
n_pca: 20
|
73 |
+
sigma_pca: 2.0
|
74 |
+
prev_ckpt: ./checkpoints/checkpoints/body_ys
|
75 |
+
model:
|
76 |
+
with_viewdirs: true
|
77 |
+
random_style: false
|
78 |
+
|
79 |
+
gha:
|
80 |
+
config_path: configs/head.yaml
|
81 |
+
offline_rendering_param_fpath: ./checkpoints/render_param/head_zoomin_render_param.npz
|
82 |
+
|
83 |
+
cat:
|
84 |
+
body_gaussian_root_dir: ./checkpoints/pos_map_ys/body_mix
|
85 |
+
ref_head_gaussian_path: ./checkpoints/ref_gaussian/head/000000.ply
|
86 |
+
ref_head_param_path: ./checkpoints/ref_gaussian/head/000000_param.npz
|
87 |
+
render_cam_fpath: /home/pengc02/pengcheng/projects/gaussian_avatar/avatar_final/AnimatableGaussians/test_results/1007_slow10/checkpoints/AMASS__1007_train_data_slow10_degree90_view/batch_789377/pca_20_sigma_2.00/cameras.json
|
88 |
+
body_head_blending_param_path: ./checkpoints/render_param/body_head_blending_param.npz
|
89 |
+
|
configs/head.yaml
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gpu_id: 0
|
2 |
+
load_supres_checkpoint: './checkpoints/face_0929/supres_latest'
|
3 |
+
load_gaussianhead_checkpoint: './checkpoints/face_0929/gaussianhead_latest'
|
4 |
+
|
5 |
+
dataset:
|
6 |
+
dataroot: './test_data/face1001'
|
7 |
+
image_files: 'images/*/wrong_image.jpg'
|
8 |
+
param_files: 'params/*/params.npz'
|
9 |
+
camera_path: './test_data/face1001/cameras/0000/camera_22070938.npz'
|
10 |
+
pose_code_path: './test_data/face1001/params/0000/params.npz'
|
11 |
+
exp_path: '/home/pengc02/pengcheng/projects/gaussian_avatar/avatar_final/data/1005_thu_slow/thuSlow10.npy'
|
12 |
+
freeview: False
|
13 |
+
resolution: 2048
|
14 |
+
original_resolution: 2048
|
15 |
+
|
16 |
+
supresmodule:
|
17 |
+
input_dim: 32
|
18 |
+
output_dim: 3
|
19 |
+
network_capacity: 32
|
20 |
+
|
21 |
+
gaussianheadmodule:
|
22 |
+
num_add_mouth_points: 3000
|
23 |
+
exp_color_mlp: [180, 256, 256, 32]
|
24 |
+
pose_color_mlp: [182, 128, 32]
|
25 |
+
exp_deform_mlp: [79, 256, 256, 256, 256, 256, 3]
|
26 |
+
pose_deform_mlp: [81, 256, 256, 3]
|
27 |
+
exp_attributes_mlp: [180, 256, 256, 256, 8]
|
28 |
+
pose_attributes_mlp: [182, 128, 128, 8]
|
29 |
+
exp_coeffs_dim: 52
|
30 |
+
pos_freq: 4
|
31 |
+
dist_threshold_near: 0.05
|
32 |
+
dist_threshold_far: 0.12
|
33 |
+
deform_scale: 0.3
|
34 |
+
attributes_scale: 0.2
|
35 |
+
|
36 |
+
recorder:
|
37 |
+
name: 'thu_exp_slow'
|
38 |
+
result_path: 'results/reenactment'
|
39 |
+
|
gradio_debug.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
|
4 |
+
def load_and_display_video(video_path):
|
5 |
+
if os.path.exists(video_path):
|
6 |
+
return video_path
|
7 |
+
else:
|
8 |
+
return "Invalid video path."
|
9 |
+
|
10 |
+
with gr.Blocks() as demo:
|
11 |
+
video_input = gr.Textbox(label="Enter Video Path")
|
12 |
+
video_output = gr.Video(label="Video Output")
|
13 |
+
|
14 |
+
load_button = gr.Button("Load Video")
|
15 |
+
|
16 |
+
load_button.click(fn=load_and_display_video,
|
17 |
+
inputs=video_input,
|
18 |
+
outputs=video_output)
|
19 |
+
|
20 |
+
# 启动应用
|
21 |
+
demo.launch()
|
other_requirement.sh
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pip install kaolin==0.16.0 -f https://nvidia-kaolin.s3.us-east-2.amazonaws.com/torch-2.4.0_cu121.html
|
2 |
+
|
3 |
+
|
4 |
+
cd AnimatableGaussians
|
5 |
+
# install diff-gaussian-rasterization-depth-alpha
|
6 |
+
cd gaussians/diff_gaussian_rasterization_depth_alpha
|
7 |
+
python setup.py install
|
8 |
+
cd ../..
|
9 |
+
|
10 |
+
# install styleunet
|
11 |
+
cd network/styleunet
|
12 |
+
python setup.py install
|
13 |
+
cd ../..
|
14 |
+
|
15 |
+
# HTTPS
|
16 |
+
git clone https://github.com/graphdeco-inria/gaussian-splatting --recursive
|
17 |
+
# Modify "submodules/diff-gaussian-rasterization/cuda_rasterizer/config.h" from "NUM_CHANNELS 3" to "NUM_CHANNELS 32"
|
18 |
+
pip install submodules/diff-gaussian-rasterization
|
19 |
+
pip install submodules/simple-knn
|
output/00000000.jpg
ADDED
output/00000001.jpg
ADDED
output/00000002.jpg
ADDED
output/00000003.jpg
ADDED
output/00000004.jpg
ADDED
output/00000005.jpg
ADDED
output/00000006.jpg
ADDED
output/00000007.jpg
ADDED
output/00000008.jpg
ADDED
output/00000009.jpg
ADDED
output/00000010.jpg
ADDED
output/00000011.jpg
ADDED
output/00000012.jpg
ADDED
output/00000013.jpg
ADDED
output/00000014.jpg
ADDED
output/00000015.jpg
ADDED
output/00000016.jpg
ADDED
output/00000017.jpg
ADDED
output/00000018.jpg
ADDED
output/00000019.jpg
ADDED
output/00000020.jpg
ADDED
output/00000021.jpg
ADDED
output/00000022.jpg
ADDED
output/00000023.jpg
ADDED
output/00000024.jpg
ADDED
output/00000025.jpg
ADDED
output/00000026.jpg
ADDED
output/00000027.jpg
ADDED
output/00000028.jpg
ADDED
output/00000029.jpg
ADDED