import numpy as np import torch from plyfile import PlyData, PlyElement from typing import NamedTuple import smplx import tqdm import cv2 as cv import os from scipy.spatial.transform import Rotation as R class GaussianAttributes(NamedTuple): xyz: np.ndarray opacities: np.ndarray features_dc: np.ndarray features_extra: np.ndarray scales: np.ndarray rot: np.ndarray def load_gaussians_from_ply(path): max_sh_degree = 3 plydata = PlyData.read(path) xyz = np.stack((np.asarray(plydata.elements[0]["x"]), np.asarray(plydata.elements[0]["y"]), np.asarray(plydata.elements[0]["z"])), axis=1) opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis] features_dc = np.zeros((xyz.shape[0], 3, 1)) features_dc[:, 0, 0] = np.asarray(plydata.elements[0]["f_dc_0"]) features_dc[:, 1, 0] = np.asarray(plydata.elements[0]["f_dc_1"]) features_dc[:, 2, 0] = np.asarray(plydata.elements[0]["f_dc_2"]) extra_f_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("f_rest_")] extra_f_names = sorted(extra_f_names, key=lambda x: int(x.split('_')[-1])) assert len(extra_f_names) == 3 * (max_sh_degree + 1) ** 2 - 3 features_extra = np.zeros((xyz.shape[0], len(extra_f_names))) for idx, attr_name in enumerate(extra_f_names): features_extra[:, idx] = np.asarray(plydata.elements[0][attr_name]) # Reshape (P,F*SH_coeffs) to (P, F, SH_coeffs except DC) features_extra = features_extra.reshape((features_extra.shape[0], 3, (max_sh_degree + 1) ** 2 - 1)) scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")] scale_names = sorted(scale_names, key=lambda x: int(x.split('_')[-1])) scales = np.zeros((xyz.shape[0], len(scale_names))) for idx, attr_name in enumerate(scale_names): scales[:, idx] = np.asarray(plydata.elements[0][attr_name]) rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot")] rot_names = sorted(rot_names, key=lambda x: int(x.split('_')[-1])) rots = np.zeros((xyz.shape[0], len(rot_names))) for idx, attr_name in enumerate(rot_names): rots[:, idx] = np.asarray(plydata.elements[0][attr_name]) return GaussianAttributes(xyz, opacities, features_dc, features_extra, scales, rots) def construct_list_of_attributes(_features_dc, _features_rest, _scaling, _rotation): l = ['x', 'y', 'z', 'nx', 'ny', 'nz'] # All channels except the 3 DC for i in range(_features_dc.shape[1] * _features_dc.shape[2]): l.append('f_dc_{}'.format(i)) for i in range(_features_rest.shape[1] * _features_rest.shape[2]): l.append('f_rest_{}'.format(i)) l.append('opacity') for i in range(_scaling.shape[1]): l.append('scale_{}'.format(i)) for i in range(_rotation.shape[1]): l.append('rot_{}'.format(i)) return l def select_gaussians(gaussian_attrs, select_mask_or_idx): return GaussianAttributes( xyz=gaussian_attrs.xyz[select_mask_or_idx], opacities=gaussian_attrs.opacities[select_mask_or_idx], features_dc=gaussian_attrs.features_dc[select_mask_or_idx], features_extra=gaussian_attrs.features_extra[select_mask_or_idx], scales=gaussian_attrs.scales[select_mask_or_idx], rot=gaussian_attrs.rot[select_mask_or_idx] ) def combine_gaussians(gaussian_attrs_list): return GaussianAttributes( xyz=np.concatenate([gau.xyz for gau in gaussian_attrs_list], axis=0), opacities=np.concatenate([gau.opacities for gau in gaussian_attrs_list], axis=0), features_dc=np.concatenate([gau.features_dc for gau in gaussian_attrs_list], axis=0), features_extra=np.concatenate([gau.features_extra for gau in gaussian_attrs_list], axis=0), scales=np.concatenate([gau.scales for gau in gaussian_attrs_list], axis=0), rot=np.concatenate([gau.rot for gau in gaussian_attrs_list], axis=0), ) def apply_transformation_to_gaussians(gaussian_attrs, spatial_transformation, color_transformation=None): xyzs = np.copy(gaussian_attrs.xyz) xyzs = np.matmul(xyzs, spatial_transformation[:3, :3].transpose()) + spatial_transformation[:3, 3].reshape([1, 3]) gaussian_rotmats = R.from_quat(gaussian_attrs.rot[:, (1, 2, 3, 0)]).as_matrix() new_rots = [] for rotmat in gaussian_rotmats: rotmat = np.matmul(spatial_transformation[:3, :3], rotmat) rotq = R.from_matrix(rotmat).as_quat() rotq = np.array([rotq[3], rotq[0], rotq[1], rotq[2]]) new_rots.append(rotq) new_rots = np.stack(new_rots, axis=0) if color_transformation is not None: if color_transformation.shape[0] == 3 and color_transformation.shape[1] == 3: new_clrs = np.matmul(gaussian_attrs.features_dc[:, :, 0], color_transformation)[:, :, np.newaxis] elif color_transformation.shape[0] == 4 and color_transformation.shape[1] == 4: clrs = gaussian_attrs.features_dc[:, :, 0] clrs = np.concatenate([clrs, np.ones_like(clrs[:, :1])], axis=1) new_clrs = np.matmul(clrs, color_transformation) new_clrs = new_clrs[:, :3, np.newaxis] else: new_clrs = gaussian_attrs.features_dc return GaussianAttributes( xyz=xyzs, opacities=gaussian_attrs.opacities, features_dc=new_clrs, features_extra=gaussian_attrs.features_extra, scales=gaussian_attrs.scales, rot=new_rots, ) def update_gaussian_attributes( orig_gaussian, new_xyz=None, new_rgb=None, new_rot=None, new_opacity=None, new_scale=None): return GaussianAttributes( xyz=orig_gaussian.xyz if new_xyz is None else new_xyz, opacities=orig_gaussian.opacities if new_opacity is None else new_opacity, features_dc=orig_gaussian.features_dc if new_rgb is None else new_rgb, features_extra=orig_gaussian.features_extra, scales=orig_gaussian.scales if new_scale is None else new_scale, rot=orig_gaussian.rot if new_rot is None else new_rot, ) def save_gaussians_as_ply(path, gaussian_attrs: GaussianAttributes): os.makedirs(os.path.dirname(path), exist_ok=True) xyz = gaussian_attrs.xyz normals = np.zeros_like(xyz) features_dc = gaussian_attrs.features_dc features_rest = gaussian_attrs.features_extra opacities = gaussian_attrs.opacities scale = gaussian_attrs.scales rotation = gaussian_attrs.rot dtype_full = [(attribute, 'f4') for attribute in construct_list_of_attributes(features_dc, features_rest, scale, rotation)] elements = np.empty(xyz.shape[0], dtype = dtype_full) attributes = np.concatenate((xyz, normals, features_dc.reshape(features_dc.shape[0], -1), features_rest.reshape(features_rest.shape[0], -1), opacities, scale, rotation), axis=1) elements[:] = list(map(tuple, attributes)) el = PlyElement.describe(elements, 'vertex') PlyData([el]).write(path) return