import math import random import numpy as np import torch from torch import nn from torch.nn import functional as F from .fused_act import FusedLeakyReLU, fused_leaky_relu from .upfirdn2d import upfirdn2d from . import conv2d_gradfix class PixelNorm(nn.Module): def __init__(self): super().__init__() def forward(self, input): return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8) def make_kernel(k): k = torch.tensor(k, dtype=torch.float32) if k.ndim == 1: k = k[None, :] * k[:, None] k /= k.sum() return k class Upsample(nn.Module): def __init__(self, kernel, factor=2): super().__init__() self.factor = factor kernel = make_kernel(kernel) * (factor ** 2) self.register_buffer("kernel", kernel) p = kernel.shape[0] - factor pad0 = (p + 1) // 2 + factor - 1 pad1 = p // 2 self.pad = (pad0, pad1) def forward(self, input): out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad) return out class Downsample(nn.Module): def __init__(self, kernel, factor=2): super().__init__() self.factor = factor kernel = make_kernel(kernel) self.register_buffer("kernel", kernel) p = kernel.shape[0] - factor pad0 = (p + 1) // 2 pad1 = p // 2 self.pad = (pad0, pad1) def forward(self, input): out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad) return out class Blur(nn.Module): def __init__(self, kernel, pad, upsample_factor=1): super().__init__() kernel = make_kernel(kernel) if upsample_factor > 1: kernel = kernel * (upsample_factor ** 2) self.register_buffer("kernel", kernel) self.pad = pad def forward(self, input): out = upfirdn2d(input, self.kernel, pad=self.pad) return out class EqualConv2d(nn.Module): def __init__( self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True ): super().__init__() self.weight = nn.Parameter( torch.randn(out_channel, in_channel, kernel_size, kernel_size) ) self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2) self.stride = stride self.padding = padding if bias: self.bias = nn.Parameter(torch.zeros(out_channel)) else: self.bias = None def forward(self, input): out = conv2d_gradfix.conv2d( input, self.weight * self.scale, bias=self.bias, stride=self.stride, padding=self.padding, ) return out def __repr__(self): return ( f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]}," f" {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})" ) class EqualLinear(nn.Module): def __init__( self, in_dim, out_dim, bias=True, bias_init=0.0, lr_mul=1.0, activation=None ): super().__init__() self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) if bias: self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) else: self.bias = None self.activation = activation self.scale = (1 / math.sqrt(in_dim)) * lr_mul self.lr_mul = lr_mul def forward(self, input): if self.activation: out = F.linear(input, self.weight * self.scale) out = fused_leaky_relu(out, self.bias * self.lr_mul) else: out = F.linear( input, self.weight * self.scale, bias=self.bias * self.lr_mul ) return out def __repr__(self): return ( f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})" ) class ModulatedConv2d(nn.Module): def __init__( self, in_channel, out_channel, kernel_size, style_dim, demodulate=True, upsample=False, downsample=False, blur_kernel=[1, 3, 3, 1], fused=True, ): super().__init__() self.eps = 1e-8 self.kernel_size = kernel_size self.in_channel = in_channel self.out_channel = out_channel self.upsample = upsample self.downsample = downsample if upsample: factor = 2 p = (len(blur_kernel) - factor) - (kernel_size - 1) pad0 = (p + 1) // 2 + factor - 1 pad1 = p // 2 + 1 self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor) if downsample: factor = 2 p = (len(blur_kernel) - factor) + (kernel_size - 1) pad0 = (p + 1) // 2 pad1 = p // 2 self.blur = Blur(blur_kernel, pad=(pad0, pad1)) fan_in = in_channel * kernel_size ** 2 self.scale = 1 / math.sqrt(fan_in) self.padding = kernel_size // 2 self.weight = nn.Parameter( torch.randn(1, out_channel, in_channel, kernel_size, kernel_size) ) self.modulation = EqualLinear(style_dim, in_channel, bias_init=1) self.demodulate = demodulate self.fused = fused def __repr__(self): return ( f"{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, " f"upsample={self.upsample}, downsample={self.downsample})" ) def forward(self, input, style): batch, in_channel, height, width = input.shape if not self.fused: weight = self.scale * self.weight.squeeze(0) style = self.modulation(style) if self.demodulate: w = weight.unsqueeze(0) * style.view(batch, 1, in_channel, 1, 1) dcoefs = (w.square().sum((2, 3, 4)) + 1e-8).rsqrt() input = input * style.reshape(batch, in_channel, 1, 1) if self.upsample: weight = weight.transpose(0, 1) out = conv2d_gradfix.conv_transpose2d( input, weight, padding=0, stride=2 ) out = self.blur(out) elif self.downsample: input = self.blur(input) out = conv2d_gradfix.conv2d(input, weight, padding=0, stride=2) else: out = conv2d_gradfix.conv2d(input, weight, padding=self.padding) if self.demodulate: out = out * dcoefs.view(batch, -1, 1, 1) return out style = self.modulation(style).view(batch, 1, in_channel, 1, 1) weight = self.scale * self.weight * style if self.demodulate: demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8) weight = weight * demod.view(batch, self.out_channel, 1, 1, 1) weight = weight.view( batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size ) if self.upsample: input = input.view(1, batch * in_channel, height, width) weight = weight.view( batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size ) weight = weight.transpose(1, 2).reshape( batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size ) out = conv2d_gradfix.conv_transpose2d( input, weight, padding=0, stride=2, groups=batch ) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) out = self.blur(out) elif self.downsample: input = self.blur(input) _, _, height, width = input.shape input = input.view(1, batch * in_channel, height, width) out = conv2d_gradfix.conv2d( input, weight, padding=0, stride=2, groups=batch ) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) else: input = input.view(1, batch * in_channel, height, width) out = conv2d_gradfix.conv2d( input, weight, padding=self.padding, groups=batch ) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) return out class NoiseInjection(nn.Module): def __init__(self): super().__init__() self.weight = nn.Parameter(torch.zeros(1)) def forward(self, image, noise=None): if noise is None: batch, _, height, width = image.shape noise = image.new_empty(batch, 1, height, width).normal_() return image + self.weight * noise class ConstantInput(nn.Module): def __init__(self, channel, size=4): super().__init__() self.input = nn.Parameter(torch.randn(1, channel, size, size)) def forward(self, input): batch = input.shape[0] out = self.input.repeat(batch, 1, 1, 1) return out class ConvLayer(nn.Sequential): def __init__( self, in_channel, out_channel, kernel_size, downsample=False, blur_kernel=[1, 3, 3, 1], bias=True, activate=True, ): layers = [] if downsample: factor = 2 p = (len(blur_kernel) - factor) + (kernel_size - 1) pad0 = (p + 1) // 2 pad1 = p // 2 layers.append(Blur(blur_kernel, pad=(pad0, pad1))) stride = 2 self.padding = 0 else: stride = 1 self.padding = kernel_size // 2 layers.append( EqualConv2d( in_channel, out_channel, kernel_size, padding=self.padding, stride=stride, bias=bias and not activate, ) ) if activate: layers.append(FusedLeakyReLU(out_channel, bias=bias)) super().__init__(*layers) def get_haar_wavelet(in_channels): haar_wav_l = 1 / (2 ** 0.5) * torch.ones(1, 2) haar_wav_h = 1 / (2 ** 0.5) * torch.ones(1, 2) haar_wav_h[0, 0] = -1 * haar_wav_h[0, 0] haar_wav_ll = haar_wav_l.T * haar_wav_l haar_wav_lh = haar_wav_h.T * haar_wav_l haar_wav_hl = haar_wav_l.T * haar_wav_h haar_wav_hh = haar_wav_h.T * haar_wav_h return haar_wav_ll, haar_wav_lh, haar_wav_hl, haar_wav_hh class HaarTransform(nn.Module): def __init__(self, in_channels): super().__init__() ll, lh, hl, hh = get_haar_wavelet(in_channels) self.register_buffer('ll', ll) self.register_buffer('lh', lh) self.register_buffer('hl', hl) self.register_buffer('hh', hh) def forward(self, input): ll = upfirdn2d(input, self.ll, down=2) lh = upfirdn2d(input, self.lh, down=2) hl = upfirdn2d(input, self.hl, down=2) hh = upfirdn2d(input, self.hh, down=2) return torch.cat((ll, lh, hl, hh), 1) class InverseHaarTransform(nn.Module): def __init__(self, in_channels): super().__init__() ll, lh, hl, hh = get_haar_wavelet(in_channels) self.register_buffer('ll', ll) self.register_buffer('lh', -lh) self.register_buffer('hl', -hl) self.register_buffer('hh', hh) def forward(self, input): ll, lh, hl, hh = input.chunk(4, 1) ll = upfirdn2d(ll, self.ll, up=2, pad=(1, 0, 1, 0)) lh = upfirdn2d(lh, self.lh, up=2, pad=(1, 0, 1, 0)) hl = upfirdn2d(hl, self.hl, up=2, pad=(1, 0, 1, 0)) hh = upfirdn2d(hh, self.hh, up=2, pad=(1, 0, 1, 0)) return ll + lh + hl + hh class ConvBlock(nn.Module): def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1], downsample=True): super().__init__() self.conv1 = ConvLayer(in_channel, in_channel, 3) self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=downsample) def forward(self, input): out = self.conv1(input) out = self.conv2(out) return out class FromRGB(nn.Module): def __init__(self, out_channel, in_channel, downsample=True, blur_kernel=[1, 3, 3, 1], use_wt=True): super().__init__() self.downsample = downsample self.use_wt = use_wt if downsample: self.downsample = Downsample(blur_kernel) if use_wt: self.iwt = InverseHaarTransform(in_channel) self.dwt = HaarTransform(in_channel) self.in_channel = in_channel * 4 if self.use_wt else in_channel self.conv = ConvLayer(self.in_channel, out_channel, 1) def forward(self, input, skip=None): if self.downsample: if self.use_wt: input = self.iwt(input) # [1024, 3] input = self.downsample(input) # [512, 3] input = self.dwt(input) # [256, 12] else: input = self.downsample(input) # [512, 3] out = self.conv(input) # [256, out_channel] if skip is not None: out = out + skip return input, out class Discriminator(nn.Module): def __init__(self, size, img_channel=6, channel_multiplier=2, blur_kernel=[1, 3, 3, 1], c_dim=0): super().__init__() channels = { 4: 512, 8: 512, 16: 512, 32: 512, 64: 256 * channel_multiplier, 128: 128 * channel_multiplier, 256: 64 * channel_multiplier, 512: 32 * channel_multiplier, 1024: 16 * channel_multiplier, 2048: 16 * channel_multiplier, 4096: 16 * channel_multiplier } self.dwt = HaarTransform(img_channel) self.from_rgbs = nn.ModuleList() self.convs = nn.ModuleList() log_size = int(math.log(size, 2)) - 1 in_channel = channels[size] for i in range(log_size, 2, -1): out_channel = channels[2 ** (i - 1)] self.from_rgbs.append(FromRGB(in_channel, img_channel, downsample=i != log_size)) self.convs.append(ConvBlock(in_channel, out_channel, blur_kernel)) in_channel = out_channel self.from_rgbs.append(FromRGB(channels[4], img_channel)) self.stddev_group = 4 self.stddev_feat = 1 self.final_conv = ConvLayer(in_channel + 1, channels[4], 3) self.final_linear = nn.Sequential( EqualLinear(channels[4] * 4 * 4, channels[4], activation="fused_lrelu"), EqualLinear(channels[4], 1), ) self.c_dim = c_dim if c_dim > 0: style_dim = 64 lr_mlp = 0.01 layers = [] layers.append( EqualLinear( c_dim, style_dim, lr_mul=lr_mlp, activation="fused_lrelu" ) ) for i in range(3): layers.append( EqualLinear( style_dim, style_dim, lr_mul=lr_mlp, activation="fused_lrelu" ) ) self.mapping = nn.Sequential(*layers) def forward(self, input, flat_pose=None): input = self.dwt(input) out = None for from_rgb, conv in zip(self.from_rgbs, self.convs): input, out = from_rgb(input, out) out = conv(out) _, out = self.from_rgbs[-1](input, out) batch, channel, height, width = out.shape group = min(batch, self.stddev_group) stddev = out.view(group, -1, self.stddev_feat, channel // self.stddev_feat, height, width) stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8) stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2) stddev = stddev.repeat(group, 1, height, width) out = torch.cat([out, stddev], 1) out = self.final_conv(out) out = out.view(batch, -1) out = self.final_linear(out) if self.c_dim > 0: pose_embed = self.mapping(flat_pose) pose_embed = self.normalize_2nd_moment(pose_embed) out = (out * pose_embed).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.c_dim)) return out def normalize_2nd_moment(self, x, dim=1, eps=1e-8): return x * (x.square().mean(dim=dim, keepdim=True) + eps).rsqrt() class StyledConv(nn.Module): def __init__( self, in_channel, out_channel, kernel_size, style_dim, upsample=False, blur_kernel=[1, 3, 3, 1], demodulate=True, ): super().__init__() self.conv = ModulatedConv2d( in_channel, out_channel, kernel_size, style_dim, upsample=upsample, blur_kernel=blur_kernel, demodulate=demodulate, ) self.noise = NoiseInjection() # self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1)) # self.activate = ScaledLeakyReLU(0.2) self.activate = FusedLeakyReLU(out_channel) def forward(self, input, style, noise=None): out = self.conv(input, style) out = self.noise(out, noise=noise) # out = out + self.bias out = self.activate(out) return out class ToRGB(nn.Module): def __init__(self, in_channel, style_dim, out_channel=12, upsample=True, blur_kernel=[1, 3, 3, 1], use_wt=True): super().__init__() self.use_wt = use_wt if upsample: self.upsample = Upsample(blur_kernel) if use_wt: self.iwt = InverseHaarTransform(3) self.dwt = HaarTransform(3) self.out_channel = out_channel if self.use_wt else out_channel // 4 self.conv = ModulatedConv2d(in_channel, self.out_channel, 1, style_dim, demodulate=False) self.bias = nn.Parameter(torch.zeros(1, self.out_channel, 1, 1)) def forward(self, input, style, skip=None): out = self.conv(input, style) out = out + self.bias if skip is not None: if self.use_wt: skip = self.iwt(skip) skip = self.upsample(skip) skip = self.dwt(skip) else: skip = self.upsample(skip) out = out + skip return out class DualStyleUNet(nn.Module): def __init__(self, inp_size, inp_ch, out_ch, out_size, style_dim, n_mlp, middle_size=8, c_dim=0, channel_multiplier=2, blur_kernel=[1, 3, 3, 1], lr_mlp=0.01): super().__init__() self.inp_size = inp_size self.style_dim = style_dim self.middle_log_size = int(math.log(middle_size, 2)) layers = [PixelNorm()] if c_dim == 0: layers.append(EqualLinear( style_dim, style_dim, lr_mul=lr_mlp, activation="fused_lrelu" )) else: layers.append(EqualLinear( style_dim + c_dim, style_dim, lr_mul=lr_mlp, activation="fused_lrelu" )) for i in range(n_mlp-1): layers.append( EqualLinear( style_dim, style_dim, lr_mul=lr_mlp, activation="fused_lrelu" ) ) self.style = nn.Sequential(*layers) # mapping network self.channels = { 4: 512, 8: 512, 16: 512, 32: 512, 64: 256 * channel_multiplier, 128: 128 * channel_multiplier, 256: 64 * channel_multiplier, 512: 32 * channel_multiplier, 1024: 16 * channel_multiplier, 2048: 16 * channel_multiplier, 4096: 16 * channel_multiplier } self.log_size = int(math.log(out_size, 2)) - 1 # add new layer here # self.dwt = HaarTransform(3) # self.from_rgbs = nn.ModuleList() # self.cond_convs = nn.ModuleList() self.comb_convs = nn.ModuleList() in_channel = self.channels[inp_size // 2] # 64 self.from_rgbs = nn.ModuleList() self.cond_convs = nn.ModuleList() self.comb_convs = nn.ModuleList() # 64, 32, 16 self.comb_convs.append(ConvLayer(in_channel * 2, in_channel, 3)) self.conv_in = ConvLayer(inp_ch, in_channel, 3, downsample=True) for i in range(int(math.log(inp_size, 2)) - 2, self.middle_log_size - 1, -1): # 32, 16, 8 out_channel = self.channels[2 ** i] # (inp_size/2)->->(8*512) self.from_rgbs.append(FromRGB(in_channel, inp_ch, downsample=True, use_wt=False)) # //2 # self.from_rgbs.append(FromRGB(in_channel, inp_ch, downsample=(i + 1)!=int(math.log(inp_size, 2)), use_wt=False)) self.cond_convs.append(ConvBlock(in_channel, out_channel, blur_kernel)) # //2 if i > self.middle_log_size: self.comb_convs.append(ConvLayer(out_channel * 2, out_channel, 3)) else: self.comb_convs.append(ConvLayer(out_channel, out_channel, 3)) # ζœ€εŽδΈ€ε±‚ (8*512) in_channel = out_channel # self.input = ConstantInput(self.channels[middle_size], size=middle_size) # self.conv1 = StyledConv( # self.channels[middle_size], self.channels[middle_size], 3, style_dim, blur_kernel=blur_kernel # ) # self.to_rgb1 = ToRGB(self.channels[middle_size], style_dim, upsample=False) self.convs1 = nn.ModuleList() self.convs2 = nn.ModuleList() self.to_rgbs1 = nn.ModuleList() self.to_rgbs2 = nn.ModuleList() self.noises = nn.Module() in_channel = self.channels[middle_size] self.num_layers = (self.log_size - self.middle_log_size) * 2 for layer_idx in range(self.num_layers): res = (layer_idx + 8) // 2 shape = [1, 1, 2 ** res, 2 ** res] self.noises.register_buffer(f"noise_{layer_idx}", torch.randn(*shape)) for i in range(self.middle_log_size + 1, self.log_size + 1): # 4, 5, 6, 7, 8, 9 out_channel = self.channels[2 ** i] # (16*512)->(32*512)->(64*512)->(128*256)->(256*128)->(512*64) self.convs1.append( StyledConv( in_channel, out_channel, 3, style_dim, upsample=True, blur_kernel=blur_kernel, ) ) self.convs1.append( StyledConv( out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel ) ) self.to_rgbs1.append(ToRGB(in_channel=out_channel, style_dim=style_dim, out_channel=out_ch * 4)) self.convs2.append( StyledConv( in_channel, out_channel, 3, style_dim, upsample = True, blur_kernel = blur_kernel, ) ) self.convs2.append( StyledConv( out_channel, out_channel, 3, style_dim, blur_kernel = blur_kernel ) ) self.to_rgbs2.append(ToRGB(in_channel = out_channel, style_dim = style_dim, out_channel = out_ch * 4)) in_channel = out_channel self.iwt = InverseHaarTransform(out_ch) self.n_latent = self.log_size * 2 - (self.middle_log_size * 2 - 1) + 1 def make_noise(self, device, zero_noise=False): noises = [] func = torch.zeros if zero_noise else torch.randn for i in range(self.middle_log_size + 1, self.log_size + 1): for _ in range(2): noises.append(func(1, 1, 2 ** i, 2 ** i, device=device)) # if zero_noise: # for i in range(len(noises)): # if i < len(noises) - 2: # noises[i] = None return noises def mean_latent(self, n_latent): latent_in = torch.randn( n_latent, self.style_dim, device=self.input.input.device ) latent = self.style(latent_in).mean(0, keepdim=True) return latent def get_latent(self, input): return self.style(input) def forward( self, styles, condition_img, cond=None, return_latents=False, inject_index=None, truncation=1, truncation_latent=None, input_is_latent=False, noise=None, randomize_noise=True, view_feature1 = None, view_feature2 = None ): """ :param randomize_noise: False, use fixed noise """ if not input_is_latent: if cond is None: styles = [self.style(s) for s in styles] else: styles = [self.style(torch.cat([s, cond], dim=-1)) for s in styles] if noise is None: if randomize_noise: noise = [None] * self.num_layers else: noise = [ getattr(self.noises, f"noise_{i}") for i in range(self.num_layers) ] if truncation < 1: style_t = [] for style in styles: style_t.append( truncation_latent + truncation * (style - truncation_latent) ) styles = style_t if len(styles) < 2: inject_index = self.n_latent if styles[0].ndim < 3: latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) else: latent = styles[0] else: if inject_index is None: inject_index = random.randint(1, self.n_latent - 1) latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1) latent = torch.cat([latent, latent2], 1) # cond_list = self.img_unet(condition_img) cond_img = condition_img cond_out = self.conv_in(cond_img) ### None cond_list = [cond_out] ### [] cond_num = 0 for from_rgb, cond_conv in zip(self.from_rgbs, self.cond_convs): cond_img, cond_out = from_rgb(cond_img, cond_out) cond_out = cond_conv(cond_out) # print('Down', cond_img.shape, cond_out.shape) cond_list.append(cond_out) cond_num += 1 # out = self.input(latent) # out = self.conv1(out, latent[:, 0], noise=noise[0]) # skip = self.to_rgb1(out, latent[:, 1]) i = 0 skip = None for conv1, conv2, noise1, noise2, to_rgb in zip( self.convs1[::2], self.convs1[1::2], noise[::2], noise[1::2], self.to_rgbs1 ): if i == 0: out = self.comb_convs[-1](cond_list[-1]) elif i < 2 * len(self.comb_convs): out = torch.cat([out, cond_list[-1 - (i // 2)]], dim=1) out = self.comb_convs[-1 - (i // 2)](out) out = conv1(out, latent[:, i], noise=noise1) out = conv2(out, latent[:, i + 1], noise=noise2) skip = to_rgb(out, latent[:, i + 2], skip) # print(i, out.shape, skip.shape) if view_feature1 is not None and i == 8: view_feature1 = F.interpolate(view_feature1, out.shape[-2:], mode = 'bilinear') # (B, 128, 256. 256) out = out + view_feature1 i += 2 image1 = self.iwt(skip) i = 0 skip = None for conv1, conv2, noise1, noise2, to_rgb in zip( self.convs2[::2], self.convs2[1::2], noise[::2], noise[1::2], self.to_rgbs2 ): if i == 0: out = self.comb_convs[-1](cond_list[-1]) elif i < 2 * len(self.comb_convs): out = torch.cat([out, cond_list[-1 - (i // 2)]], dim=1) out = self.comb_convs[-1 - (i // 2)](out) out = conv1(out, latent[:, i], noise=noise1) out = conv2(out, latent[:, i + 1], noise=noise2) skip = to_rgb(out, latent[:, i + 2], skip) if view_feature2 is not None and i == 8: view_feature2 = F.interpolate(view_feature2, out.shape[-2:], mode = 'bilinear') # (B, 128, 256. 256) out = out + view_feature2 i += 2 image2 = self.iwt(skip) images = torch.cat([image1, image2], 1) if return_latents: return images, latent else: return images, None