import torch import os import sys import tqdm import glob import numpy as np import cv2 import face_alignment from skimage import io import argparse parser = argparse.ArgumentParser() parser.add_argument('--data_source', type=str, default='./data/input') args = parser.parse_args() DATA_SOURCE = args.data_source device = torch.device('cuda:0') fa = face_alignment.FaceAlignment(face_alignment.LandmarksType.THREE_D, flip_input=False, face_detector='blazeface') # DATA_SOURCE = '../../data/face_data' # DATA_SOURCE = '../../data/face_data' data_folder = os.path.join(DATA_SOURCE, 'images') frame_folders = sorted(glob.glob(data_folder + '/*')) for frame_folder in tqdm.tqdm(frame_folders): if 'background' in frame_folder: continue image_paths = glob.glob(frame_folder + '/image_*') images = np.stack([io.imread(image_path) for image_path in image_paths]) images = torch.from_numpy(images).float().permute(0, 3, 1, 2).to(device) results = fa.get_landmarks_from_batch(images, return_landmark_score=True) for i in range(len(results[0])): if results[1][i] is None: results[0][i] = np.zeros([68, 3], dtype=np.float32) results[1][i] = [np.zeros([68], dtype=np.float32)] if len(results[1][i]) > 1: total_score = 0.0 for j in range(len(results[1][i])): if np.sum(results[1][i][j]) > total_score: total_score = np.sum(results[1][i][j]) landmarks_i = results[0][i][j*68:(j+1)*68] scores_i = results[1][i][j:j+1] results[0][i] = landmarks_i results[1][i] = scores_i landmarks = np.concatenate([np.stack(results[0])[:, :, :2], np.stack(results[1]).transpose(0, 2, 1)], -1) i = 0 for image_path in image_paths: landmarks_path = image_path.replace('image_', 'landmarks_').replace('.jpg', '.npy') np.save(landmarks_path, landmarks[i]) i += 1