import torch import torch.nn as nn # Positional encoding (section 5.1) class Embedder: def __init__(self, **kwargs): self.kwargs = kwargs self.create_embedding_fn() def create_embedding_fn(self): embed_fns = [] d = self.kwargs['input_dims'] out_dim = 0 if self.kwargs['include_input']: embed_fns.append(lambda x : x) out_dim += d max_freq = self.kwargs['max_freq_log2'] N_freqs = self.kwargs['num_freqs'] if self.kwargs['log_sampling']: freq_bands = 2.**torch.linspace(0., max_freq, steps=N_freqs) else: freq_bands = torch.linspace(2.**0., 2.**max_freq, steps=N_freqs) for freq in freq_bands: for p_fn in self.kwargs['periodic_fns']: embed_fns.append(lambda x, p_fn=p_fn, freq=freq : p_fn(x * freq)) out_dim += d self.embed_fns = embed_fns self.out_dim = out_dim def embed(self, inputs): return torch.cat([fn(inputs) for fn in self.embed_fns], -1) def get_embedder(multires, i=0): if i == -1: return nn.Identity(), 3 embed_kwargs = { 'include_input' : True, 'input_dims' : 1, 'max_freq_log2' : multires-1, 'num_freqs' : multires, 'log_sampling' : True, 'periodic_fns' : [torch.sin, torch.cos], } embedder_obj = Embedder(**embed_kwargs) embed = lambda x, eo=embedder_obj : eo.embed(x) return embed, embedder_obj.out_dim