import torch import torch.nn as nn import torch.nn.functional as F class DoubleConv(nn.Module): """(convolution => [BN] => ReLU) * 2""" def __init__(self, in_channels, out_channels, mid_channels=None): super().__init__() if not mid_channels: mid_channels = out_channels self.double_conv = nn.Sequential( nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False), nn.InstanceNorm2d(mid_channels), nn.ReLU(inplace=True), nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False), nn.InstanceNorm2d(out_channels), nn.ReLU(inplace=True) ) def forward(self, x): return self.double_conv(x) class Down(nn.Module): """Downscaling with maxpool then double conv""" def __init__(self, in_channels, out_channels): super().__init__() self.maxpool_conv = nn.Sequential( nn.MaxPool2d(2), DoubleConv(in_channels, out_channels) ) def forward(self, x): return self.maxpool_conv(x) class Up(nn.Module): """Upscaling then double conv""" def __init__(self, in_channels, out_channels): super().__init__() self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) self.conv = DoubleConv(in_channels, out_channels, in_channels // 2) def forward(self, x1, x2=None): x1 = self.up(x1) if x2 is not None: diffY = x2.size()[2] - x1.size()[2] diffX = x2.size()[3] - x1.size()[3] x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2]) x = torch.cat([x2, x1], dim=1) else: x = x1 return self.conv(x) class OutConv(nn.Module): def __init__(self, in_channels, out_channels): super(OutConv, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1) self.act_fn = nn.Sigmoid() def forward(self, x): y = self.act_fn(self.conv(x)) return y class Upsampler(nn.Module): def __init__(self, input_dim=32, output_dim=3, network_capacity=128): super(Upsampler, self).__init__() self.inc = DoubleConv(input_dim, network_capacity * 4) self.up1 = Up(network_capacity * 4, network_capacity * 2) self.up2 = Up(network_capacity * 2, network_capacity) self.outc = OutConv(network_capacity, output_dim) def forward(self, x): x = self.inc(x) x = self.up1(x) x = self.up2(x) x = self.outc(x) return x