# # Copyright (C) 2023, Inria # GRAPHDECO research group, https://team.inria.fr/graphdeco # All rights reserved. # # This software is free for non-commercial, research and evaluation use # under the terms of the LICENSE.md file. # # For inquiries contact george.drettakis@inria.fr # import torch import sys from datetime import datetime import numpy as np import random def inverse_sigmoid(x): return torch.log(x/(1-x)) def PILtoTorch(pil_image, resolution): resized_image_PIL = pil_image.resize(resolution) resized_image = torch.from_numpy(np.array(resized_image_PIL)) / 255.0 if len(resized_image.shape) == 3: return resized_image.permute(2, 0, 1) else: return resized_image.unsqueeze(dim=-1).permute(2, 0, 1) def get_expon_lr_func( lr_init, lr_final, lr_delay_steps=0, lr_delay_mult=1.0, max_steps=1000000 ): """ Copied from Plenoxels Continuous learning rate decay function. Adapted from JaxNeRF The returned rate is lr_init when step=0 and lr_final when step=max_steps, and is log-linearly interpolated elsewhere (equivalent to exponential decay). If lr_delay_steps>0 then the learning rate will be scaled by some smooth function of lr_delay_mult, such that the initial learning rate is lr_init*lr_delay_mult at the beginning of optimization but will be eased back to the normal learning rate when steps>lr_delay_steps. :param conf: config subtree 'lr' or similar :param max_steps: int, the number of steps during optimization. :return HoF which takes step as input """ def helper(step): if step < 0 or (lr_init == 0.0 and lr_final == 0.0): # Disable this parameter return 0.0 if lr_delay_steps > 0: # A kind of reverse cosine decay. delay_rate = lr_delay_mult + (1 - lr_delay_mult) * np.sin( 0.5 * np.pi * np.clip(step / lr_delay_steps, 0, 1) ) else: delay_rate = 1.0 t = np.clip(step / max_steps, 0, 1) log_lerp = np.exp(np.log(lr_init) * (1 - t) + np.log(lr_final) * t) return delay_rate * log_lerp return helper def strip_lowerdiag(L): uncertainty = torch.zeros((L.shape[0], 6), dtype=torch.float, device=L.device) uncertainty[:, 0] = L[:, 0, 0] uncertainty[:, 1] = L[:, 0, 1] uncertainty[:, 2] = L[:, 0, 2] uncertainty[:, 3] = L[:, 1, 1] uncertainty[:, 4] = L[:, 1, 2] uncertainty[:, 5] = L[:, 2, 2] return uncertainty def strip_symmetric(sym): return strip_lowerdiag(sym) def build_rotation(r): norm = torch.sqrt(r[:,0]*r[:,0] + r[:,1]*r[:,1] + r[:,2]*r[:,2] + r[:,3]*r[:,3]) q = r / norm[:, None] R = torch.zeros((q.size(0), 3, 3), device=r.device) r = q[:, 0] x = q[:, 1] y = q[:, 2] z = q[:, 3] R[:, 0, 0] = 1 - 2 * (y*y + z*z) R[:, 0, 1] = 2 * (x*y - r*z) R[:, 0, 2] = 2 * (x*z + r*y) R[:, 1, 0] = 2 * (x*y + r*z) R[:, 1, 1] = 1 - 2 * (x*x + z*z) R[:, 1, 2] = 2 * (y*z - r*x) R[:, 2, 0] = 2 * (x*z - r*y) R[:, 2, 1] = 2 * (y*z + r*x) R[:, 2, 2] = 1 - 2 * (x*x + y*y) return R def build_scaling_rotation(s, r): L = torch.zeros((s.shape[0], 3, 3), dtype=torch.float, device=r.device) R = build_rotation(r) L[:,0,0] = s[:,0] L[:,1,1] = s[:,1] L[:,2,2] = s[:,2] L = R @ L return L def Rotate_y_180(X, pos='right'): R = torch.eye(3).to(X.device) R[0,0] = -1.0 R[2,2] = -1.0 if pos == 'right': X = torch.matmul(X, R) else: X = torch.matmul(R, X) return X def Rotate_z_180(X, pos='right'): R = torch.eye(3).to(X.device) R[0,0] = -1.0 R[1,1] = -1.0 if pos == 'right': X = torch.matmul(X, R) else: X = torch.matmul(R, X) return X