penscola's picture
Update app.py
dabe296
import numpy as np
import pandas as pd
import pickle
import gradio as gr
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestRegressor
# Load the saved full pipeline from the file
model_file = 'Random-Forest-Regressor.pkl'
with open(model_file, 'rb') as f_in:
scaler, model = pickle.load(f_in)
# Define the predict function
def predict(SPX, USO, SLV, EUR_USD):
# Create a DataFrame from the input data
input_data = pd.DataFrame({
'SPX': [SPX] if SPX is not None else [0], # Replace None with default value
'USO': [USO] if USO is not None else [0], # Replace None with default value
'SLV': [SLV] if SLV is not None else [0], # Replace None with default value
'EUR_USD': [EUR_USD] if EUR_USD is not None else [0], # Replace None with default value
})
# Make predictions using the loaded logistic regression model
#predict probabilities
predictions = model.predict(input_data)
#take the index of the maximum probability
#return predictions[0]
return(f'[Info] Predicted probabilities{predictions}')
# Setting Gradio App Interface
with gr.Blocks(css=".gradio-container {background-color:grey }",theme=gr.themes.Base(primary_hue='blue'),title='Uriel') as demo:
gr.Markdown("# Gold Price prediction #\n*This App allows the user to predict the price of Gold.*")
# Receiving ALL Input Data here
gr.Markdown("**Demographic Data**")
with gr.Row():
gender = gr.Number(label="Standard & Poor's Index")
SeniorCitizen = gr.Number(label="United State Oil Fund")
Partner = gr.Number(label="Silver Price")
Dependents = gr.Number(label="EURO_Dollar Exchange")
# Output Prediction
output = gr.Text(label="Outcome")
submit_button = gr.Button("Predict")
submit_button.click(fn= predict,
outputs= output,
inputs=[gender, SeniorCitizen, Partner, Dependents],
),
# Add the reset and flag buttons
def clear():
output.value = ""
return 'Predicted values have been reset'
clear_btn = gr.Button("Reset", variant="primary")
clear_btn.click(fn=clear, inputs=None, outputs=output)
demo.launch(inbrowser = True)