Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- Random-Forest-Regressor.pkl +3 -0
- app.py +69 -0
- requirements.txt +5 -0
Random-Forest-Regressor.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fcf9fc0ead5c22e855b1bbd75856946d09fe8c1396116e803753b7246e2b25f0
|
3 |
+
size 16681902
|
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import pickle
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
from sklearn.preprocessing import MinMaxScaler
|
8 |
+
from sklearn.model_selection import GridSearchCV
|
9 |
+
from sklearn.ensemble import RandomForestRegressor
|
10 |
+
|
11 |
+
# Load the saved full pipeline from the file
|
12 |
+
model_file = '/media/penscola/Penscola@Tech/Projects/Gold-Prediction/model/Random-Forest-Regressor.pkl'
|
13 |
+
|
14 |
+
with open(model_file, 'rb') as f_in:
|
15 |
+
scaler, model = pickle.load(f_in)
|
16 |
+
|
17 |
+
# Define the predict function
|
18 |
+
def predict(SPX, USO, SLV, EUR_USD):
|
19 |
+
# Create a DataFrame from the input data
|
20 |
+
input_data = pd.DataFrame({
|
21 |
+
'SPX': [SPX] if SPX is not None else [0], # Replace None with default value
|
22 |
+
'USO': [USO] if USO is not None else [0], # Replace None with default value
|
23 |
+
'SLV': [SLV] if SLV is not None else [0], # Replace None with default value
|
24 |
+
'EUR_USD': [EUR_USD] if EUR_USD is not None else [0], # Replace None with default value
|
25 |
+
})
|
26 |
+
|
27 |
+
|
28 |
+
# Make predictions using the loaded logistic regression model
|
29 |
+
#predict probabilities
|
30 |
+
predictions = model.predict(input_data)
|
31 |
+
#take the index of the maximum probability
|
32 |
+
|
33 |
+
|
34 |
+
#return predictions[0]
|
35 |
+
return(f'[Info] Predicted probabilities{predictions}')
|
36 |
+
|
37 |
+
# Setting Gradio App Interface
|
38 |
+
with gr.Blocks(css=".gradio-container {background-color:grey }",theme=gr.themes.Base(primary_hue='blue'),title='Uriel') as demo:
|
39 |
+
gr.Markdown("# Gold Price prediction #\n*This App allows the user to predict the price of Gold.*")
|
40 |
+
|
41 |
+
# Receiving ALL Input Data here
|
42 |
+
gr.Markdown("**Demographic Data**")
|
43 |
+
with gr.Row():
|
44 |
+
gender = gr.Number(label="Standard & Poor's Index")
|
45 |
+
SeniorCitizen = gr.Number(label="United State Oil Fund")
|
46 |
+
Partner = gr.Number(label="Silver Price")
|
47 |
+
Dependents = gr.Number(label="EURO_Dollar Exchange")
|
48 |
+
|
49 |
+
|
50 |
+
# Output Prediction
|
51 |
+
output = gr.Text(label="Outcome")
|
52 |
+
submit_button = gr.Button("Predict")
|
53 |
+
|
54 |
+
submit_button.click(fn= predict,
|
55 |
+
outputs= output,
|
56 |
+
inputs=[gender, SeniorCitizen, Partner, Dependents],
|
57 |
+
|
58 |
+
),
|
59 |
+
|
60 |
+
# Add the reset and flag buttons
|
61 |
+
def clear():
|
62 |
+
output.value = ""
|
63 |
+
return 'Predicted values have been reset'
|
64 |
+
|
65 |
+
clear_btn = gr.Button("Reset", variant="primary")
|
66 |
+
clear_btn.click(fn=clear, inputs=None, outputs=output)
|
67 |
+
|
68 |
+
|
69 |
+
demo.launch(inbrowser = True)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
sklearn==0.0.post9
|
2 |
+
pandas==2.1.1
|
3 |
+
numpy==1.25.2
|
4 |
+
seaborn==0.12.2
|
5 |
+
matplotlib==3.8.0
|