import streamlit as st import streamlit.components.v1 as com #import libraries from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig import numpy as np #convert logits to probabilities from scipy.special import softmax from transformers import pipeline #Set the page configs st.set_page_config(page_title='Sentiments Analysis',page_icon='😎',layout='wide') #welcome Animation com.iframe("https://embed.lottiefiles.com/animation/149093") st.markdown("

Covid Vaccine Tweet Sentiments

",unsafe_allow_html=True) st.write("

These models were trained to detect how a user feels about the covid vaccines based on their tweets(text)

",unsafe_allow_html=True) #Create a form to take user inputs with st.form(key='tweet',clear_on_submit=True): #input text text=st.text_area('Copy and paste a tweet or type one',placeholder='I find it quite amusing how people ignore the effects of not taking the vaccine') #Set examples alt_text=st.selectbox("Can't Type? Select an Example below",('I hate the vaccines','Vaccines made from dead human tissues','Take the vaccines or regret the consequences','Covid is a Hoax','Making the vaccines is a huge step forward for humanity. Just take them')) #Select a model models={'Bert':'penscola/tweet_sentiments_analysis_roberta', 'Distilbert':'penscola/tweet_sentiments_analysis_distilbert', 'Roberta':'penscola/tweet_sentiments_analysis_roberta'} model=st.selectbox('Which model would you want to Use?',('Bert','Distilbert','Roberta')) #Submit submit=st.form_submit_button('Predict','Continue processing input') selected_model=models[model] #create columns to show outputs col1,col2,col3=st.columns(3) col1.write('

Sentiment Emoji

',unsafe_allow_html=True) col2.write('

How this user feels about the vaccine

',unsafe_allow_html=True) col3.write('

Confidence of this prediction

',unsafe_allow_html=True) if submit: #Check text if text=="": text=alt_text st.success(f"input text is set to '{text}'") else: st.success('Text received',icon='✅') #import the model pipe=pipeline(model=selected_model) #pass text to model output=pipe(text) output_dict=output[0] lable=output_dict['label'] score=output_dict['score'] #output if lable=='NEGATIVE' or lable=='LABEL_0': with col1: com.iframe("https://embed.lottiefiles.com/animation/125694") col2.write('NEGATIVE') col3.write(f'{score:.2%}') elif lable=='POSITIVE'or lable=='LABEL_2': with col1: com.iframe("https://embed.lottiefiles.com/animation/148485") col2.write('POSITIVE') col3.write(f'{score:.2%}') else: with col1: com.iframe("https://embed.lottiefiles.com/animation/136052") col2.write('NEUTRAL') col3.write(f'{score:.2%}')