Spaces:
Sleeping
Sleeping
import gradio as gr | |
import spaces | |
import pandas as pd | |
import torch | |
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer, AutoModel | |
import plotly.graph_objects as go | |
import logging | |
import io | |
from rapidfuzz import fuzz | |
import time | |
import os | |
groq_key = os.environ['groq_key'] | |
from langchain_openai import ChatOpenAI | |
from langchain.prompts import PromptTemplate | |
from openpyxl import load_workbook | |
from openpyxl.utils.dataframe import dataframe_to_rows | |
import torch.nn.functional as F | |
import numpy as np | |
import logging | |
from typing import List, Set, Tuple | |
import asyncio | |
def fuzzy_deduplicate(df, column, threshold=55): | |
"""Deduplicate rows based on fuzzy matching of text content""" | |
seen_texts = [] | |
indices_to_keep = [] | |
for i, text in enumerate(df[column]): | |
if pd.isna(text): | |
indices_to_keep.append(i) | |
continue | |
text = str(text) | |
if not seen_texts or all(fuzz.ratio(text, seen) < threshold for seen in seen_texts): | |
seen_texts.append(text) | |
indices_to_keep.append(i) | |
return df.iloc[indices_to_keep] | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
class GPUTaskManager: | |
def __init__(self, max_retries=3, retry_delay=30, cleanup_callback=None): | |
self.max_retries = max_retries | |
self.retry_delay = retry_delay | |
self.cleanup_callback = cleanup_callback | |
async def run_with_retry(self, task_func, *args, **kwargs): | |
"""Execute a GPU task with retry logic""" | |
for attempt in range(self.max_retries): | |
try: | |
return await task_func(*args, **kwargs) | |
except Exception as e: | |
if "GPU task aborted" in str(e) or "GPU quota" in str(e): | |
if attempt < self.max_retries - 1: | |
if self.cleanup_callback: | |
self.cleanup_callback() | |
torch.cuda.empty_cache() | |
await asyncio.sleep(self.retry_delay) | |
continue | |
raise | |
def batch_process(items, batch_size=3): | |
"""Split items into smaller batches""" | |
return [items[i:i + batch_size] for i in range(0, len(items), batch_size)] | |
def is_gpu_error(error): | |
"""Check if an error is GPU-related""" | |
error_msg = str(error).lower() | |
return any(msg in error_msg for msg in [ | |
"gpu task aborted", | |
"gpu quota", | |
"cuda out of memory", | |
"device-side assert" | |
]) | |
class ProcessControl: | |
def __init__(self): | |
self.stop_requested = False | |
def request_stop(self): | |
self.stop_requested = True | |
def should_stop(self): | |
return self.stop_requested | |
def reset(self): | |
self.stop_requested = False | |
class ProcessControl: | |
def __init__(self): | |
self.stop_requested = False | |
self.error = None | |
def request_stop(self): | |
self.stop_requested = True | |
def should_stop(self): | |
return self.stop_requested | |
def reset(self): | |
self.stop_requested = False | |
self.error = None | |
def set_error(self, error): | |
self.error = error | |
self.stop_requested = True | |
class EventDetector: | |
def __init__(self): | |
try: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
logger.info(f"Initializing models on device: {device}") | |
# Initialize all models | |
self.initialize_models(device) | |
# Initialize transformer for declusterization | |
self.tokenizer_cluster = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-mpnet-base-v2') | |
self.model_cluster = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-mpnet-base-v2').to(device) | |
self.device = device | |
self.initialized = True | |
logger.info("All models initialized successfully") | |
except Exception as e: | |
logger.error(f"Error in EventDetector initialization: {str(e)}") | |
raise | |
def mean_pooling(self, model_output, attention_mask): | |
token_embeddings = model_output[0] | |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() | |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) | |
def encode_text(self, text): | |
if pd.isna(text): | |
text = "" | |
text = str(text) | |
encoded_input = self.tokenizer_cluster(text, padding=True, truncation=True, max_length=512, return_tensors='pt').to(self.device) | |
with torch.no_grad(): | |
model_output = self.model_cluster(**encoded_input) | |
sentence_embeddings = self.mean_pooling(model_output, encoded_input['attention_mask']) | |
return torch.nn.functional.normalize(sentence_embeddings[0], p=2, dim=0) | |
def decluster_texts(self, df, text_column, similarity_threshold=0.75, time_threshold=24): | |
try: | |
if df.empty: | |
return df | |
# Sort by datetime if available | |
if 'datetime' in df.columns: | |
df = df.sort_values('datetime') | |
# Initialize lists and sets for tracking | |
indices_to_delete = set() | |
# Process each text | |
for i in df.index: | |
if i in indices_to_delete: # Skip if already marked for deletion | |
continue | |
text1 = df.loc[i, text_column] | |
if pd.isna(text1): | |
continue | |
text1_embedding = self.encode_text(text1) | |
current_cluster = [] | |
# Compare with other texts | |
for j in df.index: | |
if i == j or j in indices_to_delete: # Skip same text or already marked | |
continue | |
text2 = df.loc[j, text_column] | |
if pd.isna(text2): | |
continue | |
# Check time difference if datetime available | |
if 'datetime' in df.columns: | |
time_diff = pd.to_datetime(df.loc[j, 'datetime']) - pd.to_datetime(df.loc[i, 'datetime']) | |
if abs(time_diff.total_seconds() / 3600) > time_threshold: | |
continue | |
text2_embedding = self.encode_text(text2) | |
similarity = torch.dot(text1_embedding, text2_embedding).item() | |
if similarity >= similarity_threshold: | |
current_cluster.append(j) | |
# If we found similar texts, keep the longest one | |
if current_cluster: | |
current_cluster.append(i) # Add the current text to cluster | |
text_lengths = df.loc[current_cluster, text_column].fillna('').str.len() | |
longest_text_idx = text_lengths.idxmax() | |
# Mark all except longest for deletion | |
indices_to_delete.update(set(current_cluster) - {longest_text_idx}) | |
# Return DataFrame without deleted rows | |
return df.drop(index=list(indices_to_delete)) | |
except Exception as e: | |
logger.error(f"Declusterization error: {str(e)}") | |
return df | |
def initialize_models(self, device): | |
"""Initialize all models with GPU support""" | |
# Initialize translation model | |
self.translator = pipeline( | |
"translation", | |
model="Helsinki-NLP/opus-mt-ru-en", | |
device=device | |
) | |
self.rutranslator = pipeline( | |
"translation", | |
model="Helsinki-NLP/opus-mt-en-ru", | |
device=device | |
) | |
# Initialize sentiment models | |
self.finbert = pipeline( | |
"sentiment-analysis", | |
model="ProsusAI/finbert", | |
device=device, | |
truncation=True, | |
max_length=512 | |
) | |
self.roberta = pipeline( | |
"sentiment-analysis", | |
model="cardiffnlp/twitter-roberta-base-sentiment", | |
device=device, | |
truncation=True, | |
max_length=512 | |
) | |
self.finbert_tone = pipeline( | |
"sentiment-analysis", | |
model="yiyanghkust/finbert-tone", | |
device=device, | |
truncation=True, | |
max_length=512 | |
) | |
# Initialize MT5 model | |
self.model_name = "google/mt5-small" | |
self.tokenizer = AutoTokenizer.from_pretrained( | |
self.model_name, | |
legacy=True | |
) | |
self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name).to(device) | |
# Initialize Groq | |
if 'groq_key': | |
self.groq = ChatOpenAI( | |
base_url="https://api.groq.com/openai/v1", | |
model="llama-3.1-70b-versatile", | |
openai_api_key=groq_key, | |
temperature=0.0 | |
) | |
else: | |
logger.warning("Groq API key not found, impact estimation will be limited") | |
self.groq = None | |
def _translate_text(self, text): | |
"""Translate Russian text to English""" | |
try: | |
if not text or not isinstance(text, str): | |
return "" | |
text = text.strip() | |
if not text: | |
return "" | |
# Split into manageable chunks | |
max_length = 450 | |
chunks = [text[i:i + max_length] for i in range(0, len(text), max_length)] | |
translated_chunks = [] | |
for chunk in chunks: | |
result = self.translator(chunk)[0]['translation_text'] | |
translated_chunks.append(result) | |
time.sleep(0.1) # Rate limiting | |
return " ".join(translated_chunks) | |
except Exception as e: | |
logger.error(f"Translation error: {str(e)}") | |
return text | |
def analyze_sentiment(self, text): | |
"""Enhanced sentiment analysis with better negative detection""" | |
try: | |
if not text or not isinstance(text, str): | |
return "Neutral" | |
text = text.strip() | |
if not text: | |
return "Neutral" | |
# Get predictions with confidence scores | |
finbert_result = self.finbert(text)[0] | |
roberta_result = self.roberta(text)[0] | |
finbert_tone_result = self.finbert_tone(text)[0] | |
# Enhanced sentiment mapping with confidence thresholds | |
def map_sentiment(result): | |
label = result['label'].lower() | |
score = result['score'] | |
# Higher threshold for positive to reduce false positives | |
if label in ['positive', 'pos', 'positive tone'] and score > 0.75: | |
logger.info(f"Positive: {str(score)}") | |
return "Positive" | |
# Lower threshold for negative to catch more cases | |
elif label in ['negative', 'neg', 'negative tone'] and score > 0.75: | |
logger.info(f"Negative: {str(score)}") | |
return "Negative" | |
# Consider high-confidence neutral predictions | |
elif label == 'neutral' and score > 0.8: | |
logger.info(f"Neutral: {str(score)}") | |
return "Neutral" | |
# Default to negative for uncertain cases in financial context | |
else: | |
return "Negative" if score > 0.4 else "Neutral" | |
# Get mapped sentiments with confidence-based logic | |
sentiments = [ | |
map_sentiment(finbert_result), | |
map_sentiment(roberta_result), | |
map_sentiment(finbert_tone_result) | |
] | |
# Weighted voting - prioritize negative signals | |
if "Negative" in sentiments: | |
neg_count = sentiments.count("Negative") | |
if neg_count >= 2: # negative should be consensus | |
return "Negative" | |
pos_count = sentiments.count("Positive") | |
if pos_count >= 2: # Require stronger positive consensus | |
return "Positive" | |
return "Neutral" | |
except Exception as e: | |
logger.error(f"Sentiment analysis error: {str(e)}") | |
return "Neutral" | |
def estimate_impact(self, text, entity): | |
"""Estimate impact using Groq for negative sentiment texts""" | |
try: | |
if not self.groq: | |
return "Неопределенный эффект", "Groq API недоступен" | |
template = """ | |
You are a financial analyst. Analyze this news about {entity} and assess its potential impact. | |
News: {news} | |
Classify the impact into one of these categories: | |
1. "Значительный риск убытков" (Significant loss risk) | |
2. "Умеренный риск убытков" (Moderate loss risk) | |
3. "Незначительный риск убытков" (Minor loss risk) | |
4. "Вероятность прибыли" (Potential profit) | |
5. "Неопределенный эффект" (Uncertain effect) | |
Format your response exactly as: | |
Impact: [category] | |
Reasoning: [explanation in 2-3 sentences] | |
""" | |
prompt = PromptTemplate(template=template, input_variables=["entity", "news"]) | |
chain = prompt | self.groq | |
response = chain.invoke({ | |
"entity": entity, | |
"news": text | |
}) | |
# Parse response | |
response_text = response.content if hasattr(response, 'content') else str(response) | |
if "Impact:" in response_text and "Reasoning:" in response_text: | |
parts = response_text.split("Reasoning:") | |
impact = parts[0].split("Impact:")[1].strip() | |
reasoning = parts[1].strip() | |
else: | |
impact = "Неопределенный эффект" | |
reasoning = "Не удалось определить влияние" | |
return impact, reasoning | |
except Exception as e: | |
logger.error(f"Impact estimation error: {str(e)}") | |
return "Неопределенный эффект", f"Ошибка анализа: {str(e)}" | |
def process_text(self, text, entity): | |
"""Process text with Groq-driven sentiment analysis""" | |
try: | |
translated_text = self._translate_text(text) | |
initial_sentiment = self.analyze_sentiment(translated_text) | |
impact = "Неопределенный эффект" | |
reasoning = "" | |
# Always get Groq analysis for all texts | |
impact, reasoning = self.estimate_impact(translated_text, entity) | |
reasoning = self.rutranslator(reasoning)[0]['translation_text'] | |
# Override sentiment based on Groq impact | |
final_sentiment = initial_sentiment | |
if impact == "Вероятность прибыли": | |
final_sentiment = "Positive" | |
event_type, event_summary = self.detect_events(text, entity) | |
return { | |
'translated_text': translated_text, | |
'sentiment': final_sentiment, | |
'impact': impact, | |
'reasoning': reasoning, | |
'event_type': event_type, | |
'event_summary': event_summary | |
} | |
except Exception as e: | |
logger.error(f"Text processing error: {str(e)}") | |
return { | |
'translated_text': '', | |
'sentiment': 'Neutral', | |
'impact': 'Неопределенный эффект', | |
'reasoning': f'Ошибка обработки: {str(e)}', | |
'event_type': 'Нет', | |
'event_summary': '' | |
} | |
def detect_events(self, text, entity): | |
if not text or not entity: | |
return "Нет", "Invalid input" | |
try: | |
# Improved prompt for MT5 | |
prompt = f"""<s>Analyze this news about {entity}: | |
Text: {text} | |
Classify this news into ONE of these categories: | |
1. "Отчетность" if about: financial reports, revenue, profit, EBITDA, financial results, quarterly/annual reports | |
2. "Суд" if about: court cases, lawsuits, arbitration, bankruptcy, legal proceedings | |
3. "РЦБ" if about: bonds, securities, defaults, debt restructuring, coupon payments | |
4. "Нет" if none of the above | |
Provide classification and 2-3 sentence summary focusing on key facts. | |
Format response exactly as: | |
Category: [category name] | |
Summary: [brief factual summary]</s>""" | |
inputs = self.tokenizer( | |
prompt, | |
return_tensors="pt", | |
padding=True, | |
truncation=True, | |
max_length=512 | |
).to(self.device) | |
outputs = self.model.generate( | |
**inputs, | |
max_length=200, | |
num_return_sequences=1, | |
do_sample=False, | |
#temperature=0.0, | |
#top_p=0.9, | |
no_repeat_ngram_size=3 | |
) | |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Extract category and summary | |
if "Category:" in response and "Summary:" in response: | |
parts = response.split("Summary:") | |
category = parts[0].split("Category:")[1].strip() | |
summary = parts[1].strip() | |
# Validate category | |
valid_categories = {"Отчетность", "Суд", "РЦБ", "Нет"} | |
category = category if category in valid_categories else "Нет" | |
return category, summary | |
return "Нет", "Could not classify event" | |
except Exception as e: | |
logger.error(f"Event detection error: {str(e)}") | |
return "Нет", f"Error in event detection: {str(e)}" | |
def cleanup(self): | |
"""Clean up GPU resources""" | |
try: | |
self.model = None | |
self.translator = None | |
self.finbert = None | |
self.roberta = None | |
self.finbert_tone = None | |
torch.cuda.empty_cache() | |
self.initialized = False | |
logger.info("Cleaned up GPU resources") | |
except Exception as e: | |
logger.error(f"Error in cleanup: {str(e)}") | |
def create_visualizations(df): | |
if df is None or df.empty: | |
return None, None | |
try: | |
sentiments = df['Sentiment'].value_counts() | |
fig_sentiment = go.Figure(data=[go.Pie( | |
labels=sentiments.index, | |
values=sentiments.values, | |
marker_colors=['#FF6B6B', '#4ECDC4', '#95A5A6'] | |
)]) | |
fig_sentiment.update_layout(title="Распределение тональности") | |
events = df['Event_Type'].value_counts() | |
fig_events = go.Figure(data=[go.Bar( | |
x=events.index, | |
y=events.values, | |
marker_color='#2196F3' | |
)]) | |
fig_events.update_layout(title="Распределение событий") | |
return fig_sentiment, fig_events | |
except Exception as e: | |
logger.error(f"Visualization error: {e}") | |
return None, None | |
def process_file(file_obj): | |
try: | |
logger.info("Starting to read Excel file...") | |
df = pd.read_excel(file_obj, sheet_name='Публикации') | |
logger.info(f"Successfully read Excel file. Shape: {df.shape}") | |
# Deduplication | |
original_count = len(df) | |
df = fuzzy_deduplicate(df, 'Выдержки из текста', threshold=55) | |
logger.info(f"Removed {original_count - len(df)} duplicate entries") | |
detector = EventDetector() | |
processed_rows = [] | |
total = len(df) | |
# Process in smaller batches with quota management | |
BATCH_SIZE = 3 # Reduced batch size | |
QUOTA_WAIT_TIME = 60 # Wait time when quota is exceeded | |
for batch_start in range(0, total, BATCH_SIZE): | |
try: | |
batch_end = min(batch_start + BATCH_SIZE, total) | |
batch = df.iloc[batch_start:batch_end] | |
# Initialize models for batch | |
if not detector.initialized: | |
detector.initialize_models() | |
time.sleep(1) # Wait after initialization | |
for idx, row in batch.iterrows(): | |
try: | |
text = str(row.get('Выдержки из текста', '')) | |
if not text.strip(): | |
continue | |
entity = str(row.get('Объект', '')) | |
if not entity.strip(): | |
continue | |
# Process with GPU quota management | |
event_type = "Нет" | |
event_summary = "" | |
sentiment = "Neutral" | |
try: | |
event_type, event_summary = detector.detect_events(text, entity) | |
time.sleep(1) # Wait between GPU operations | |
sentiment = detector.analyze_sentiment(text) | |
except Exception as e: | |
if "GPU quota" in str(e): | |
logger.warning("GPU quota exceeded, waiting...") | |
time.sleep(QUOTA_WAIT_TIME) | |
continue | |
else: | |
raise e | |
processed_rows.append({ | |
'Объект': entity, | |
'Заголовок': str(row.get('Заголовок', '')), | |
'Sentiment': sentiment, | |
'Event_Type': event_type, | |
'Event_Summary': event_summary, | |
'Текст': text[:1000] | |
}) | |
logger.info(f"Processed {idx + 1}/{total} rows") | |
except Exception as e: | |
logger.error(f"Error processing row {idx}: {str(e)}") | |
continue | |
# Create intermediate results | |
if processed_rows: | |
intermediate_df = pd.DataFrame(processed_rows) | |
yield ( | |
intermediate_df, | |
None, | |
None, | |
f"Обработано {len(processed_rows)}/{total} строк" | |
) | |
# Wait between batches | |
time.sleep(2) | |
# Cleanup GPU resources after each batch | |
torch.cuda.empty_cache() | |
except Exception as e: | |
logger.error(f"Batch processing error: {str(e)}") | |
if "GPU quota" in str(e): | |
time.sleep(QUOTA_WAIT_TIME) | |
continue | |
# Final results | |
if processed_rows: | |
result_df = pd.DataFrame(processed_rows) | |
fig_sentiment, fig_events = create_visualizations(result_df) | |
return result_df, fig_sentiment, fig_events, "Обработка завершена!" | |
else: | |
return None, None, None, "Нет обработанных данных" | |
except Exception as e: | |
logger.error(f"File processing error: {str(e)}") | |
raise | |
def create_output_file(df, uploaded_file): | |
"""Create Excel file with multiple sheets from processed DataFrame""" | |
try: | |
wb = load_workbook("sample_file.xlsx") | |
# 1. Update 'Публикации' sheet | |
ws = wb['Публикации'] | |
for r_idx, row in enumerate(dataframe_to_rows(df, index=False, header=True), start=1): | |
for c_idx, value in enumerate(row, start=1): | |
ws.cell(row=r_idx, column=c_idx, value=value) | |
# 2. Update 'Мониторинг' sheet with events | |
ws = wb['Мониторинг'] | |
row_idx = 4 | |
events_df = df[df['Event_Type'] != 'Нет'].copy() | |
for _, row in events_df.iterrows(): | |
ws.cell(row=row_idx, column=5, value=row['Объект']) | |
ws.cell(row=row_idx, column=6, value=row['Заголовок']) | |
ws.cell(row=row_idx, column=7, value=row['Event_Type']) | |
ws.cell(row=row_idx, column=8, value=row['Event_Summary']) | |
ws.cell(row=row_idx, column=9, value=row['Выдержки из текста']) | |
row_idx += 1 | |
# 3. Update 'Сводка' sheet | |
ws = wb['Сводка'] | |
unique_entities = df['Объект'].unique() | |
entity_stats = [] | |
for entity in unique_entities: | |
entity_df = df[df['Объект'] == entity] | |
stats = { | |
'Объект': entity, | |
'Всего': len(entity_df), | |
'Негативные': len(entity_df[entity_df['Sentiment'] == 'Negative']), | |
'Позитивные': len(entity_df[entity_df['Sentiment'] == 'Positive']) | |
} | |
# Get most severe impact for entity | |
negative_df = entity_df[entity_df['Sentiment'] == 'Negative'] | |
if len(negative_df) > 0: | |
impacts = negative_df['Impact'].dropna() | |
if len(impacts) > 0: | |
stats['Impact'] = impacts.iloc[0] | |
else: | |
stats['Impact'] = 'Неопределенный эффект' | |
else: | |
stats['Impact'] = 'Неопределенный эффект' | |
entity_stats.append(stats) | |
# Sort by number of negative mentions | |
entity_stats = sorted(entity_stats, key=lambda x: x['Негативные'], reverse=True) | |
# Write to sheet | |
row_idx = 4 # Starting row in Сводка sheet | |
for stats in entity_stats: | |
ws.cell(row=row_idx, column=5, value=stats['Объект']) | |
ws.cell(row=row_idx, column=6, value=stats['Всего']) | |
ws.cell(row=row_idx, column=7, value=stats['Негативные']) | |
ws.cell(row=row_idx, column=8, value=stats['Позитивные']) | |
ws.cell(row=row_idx, column=9, value=stats['Impact']) | |
row_idx += 1 | |
# 4. Update 'Значимые' sheet | |
ws = wb['Значимые'] | |
row_idx = 3 | |
sentiment_df = df[df['Sentiment'].isin(['Negative', 'Positive'])].copy() | |
for _, row in sentiment_df.iterrows(): | |
ws.cell(row=row_idx, column=3, value=row['Объект']) | |
ws.cell(row=row_idx, column=4, value='релевантно') | |
ws.cell(row=row_idx, column=5, value=row['Sentiment']) | |
ws.cell(row=row_idx, column=6, value=row.get('Impact', '-')) | |
ws.cell(row=row_idx, column=7, value=row['Заголовок']) | |
ws.cell(row=row_idx, column=8, value=row['Выдержки из текста']) | |
row_idx += 1 | |
# 5. Update 'Анализ' sheet | |
ws = wb['Анализ'] | |
row_idx = 4 | |
negative_df = df[df['Sentiment'] == 'Negative'].copy() | |
for _, row in negative_df.iterrows(): | |
ws.cell(row=row_idx, column=5, value=row['Объект']) | |
ws.cell(row=row_idx, column=6, value=row['Заголовок']) | |
ws.cell(row=row_idx, column=7, value="Риск убытка") | |
ws.cell(row=row_idx, column=8, value=row.get('Reasoning', '-')) | |
ws.cell(row=row_idx, column=9, value=row['Выдержки из текста']) | |
row_idx += 1 | |
# 6. Update 'Тех.приложение' sheet | |
if 'Тех.приложение' not in wb.sheetnames: | |
wb.create_sheet('Тех.приложение') | |
ws = wb['Тех.приложение'] | |
tech_cols = ['Объект', 'Заголовок', 'Выдержки из текста', 'Translated', 'Sentiment', 'Impact', 'Reasoning'] | |
tech_df = df[tech_cols].copy() | |
for r_idx, row in enumerate(dataframe_to_rows(tech_df, index=False, header=True), start=1): | |
for c_idx, value in enumerate(row, start=1): | |
ws.cell(row=r_idx, column=c_idx, value=value) | |
# Save workbook | |
output = io.BytesIO() | |
wb.save(output) | |
output.seek(0) | |
return output | |
except Exception as e: | |
logger.error(f"Error creating output file: {str(e)}") | |
logger.error(f"DataFrame shape: {df.shape}") | |
logger.error(f"Available columns: {df.columns.tolist()}") | |
return None | |
def process_and_download(file_bytes, control=None): | |
"""Synchronous wrapper for async processing""" | |
if file_bytes is None: | |
gr.Warning("Пожалуйста, загрузите файл") | |
return pd.DataFrame(), None, None, None, "Ожидание файла...", "" | |
if control is None: | |
control = ProcessControl() | |
async def async_process(): | |
detector = None | |
gpu_manager = GPUTaskManager( | |
max_retries=3, | |
retry_delay=30, | |
cleanup_callback=lambda: detector.cleanup() if detector else None | |
) | |
try: | |
file_obj = io.BytesIO(file_bytes) | |
logger.info("File loaded into BytesIO successfully") | |
detector = EventDetector() | |
# Read and deduplicate data with retry | |
async def read_and_dedupe(): | |
df = pd.read_excel(file_obj, sheet_name='Публикации') | |
original_count = len(df) | |
df = fuzzy_deduplicate(df, 'Выдержки из текста', threshold=55) | |
return df, original_count | |
df, original_count = await gpu_manager.run_with_retry(read_and_dedupe) | |
# Process in smaller batches with better error handling | |
processed_rows = [] | |
batches = gpu_manager.batch_process(list(df.iterrows()), batch_size=3) | |
latest_result = (pd.DataFrame(), None, None, None, "Начало обработки...", "") | |
for batch in batches: | |
if control.should_stop(): | |
return latest_result | |
try: | |
# Process batch with retry mechanism | |
async def process_batch(): | |
batch_results = [] | |
for idx, row in batch: | |
text = str(row.get('Выдержки из текста', '')).strip() | |
entity = str(row.get('Объект', '')).strip() | |
if text and entity: | |
results = detector.process_text(text, entity) | |
batch_results.append({ | |
'Объект': entity, | |
'Заголовок': str(row.get('Заголовок', '')), | |
'Translated': results['translated_text'], | |
'Sentiment': results['sentiment'], | |
'Impact': results['impact'], | |
'Reasoning': results['reasoning'], | |
'Event_Type': results['event_type'], | |
'Event_Summary': results['event_summary'], | |
'Выдержки из текста': text | |
}) | |
return batch_results | |
batch_results = await gpu_manager.run_with_retry(process_batch) | |
processed_rows.extend(batch_results) | |
# Update latest result | |
if processed_rows: | |
result_df = pd.DataFrame(processed_rows) | |
latest_result = ( | |
result_df, | |
None, None, None, | |
f"Обработано {len(processed_rows)}/{len(df)} строк", | |
f"Удалено {original_count - len(df)} дубликатов" | |
) | |
except Exception as e: | |
if gpu_manager.is_gpu_error(e): | |
logger.warning(f"GPU error in batch processing: {str(e)}") | |
continue | |
else: | |
logger.error(f"Non-GPU error in batch processing: {str(e)}") | |
finally: | |
torch.cuda.empty_cache() | |
# Create final results | |
if processed_rows: | |
result_df = pd.DataFrame(processed_rows) | |
output_bytes_io = create_output_file(result_df, file_obj) | |
fig_sentiment, fig_events = create_visualizations(result_df) | |
if output_bytes_io: | |
temp_file = "results.xlsx" | |
with open(temp_file, "wb") as f: | |
f.write(output_bytes_io.getvalue()) | |
return ( | |
result_df, | |
fig_sentiment, | |
fig_events, | |
temp_file, | |
"Обработка завершена!", | |
f"Удалено {original_count - len(df)} дубликатов" | |
) | |
return (pd.DataFrame(), None, None, None, "Нет обработанных данных", "") | |
except Exception as e: | |
error_msg = f"Ошибка анализа: {str(e)}" | |
logger.error(error_msg) | |
return (pd.DataFrame(), None, None, None, error_msg, "") | |
finally: | |
if detector: | |
detector.cleanup() | |
# Run the async function in the event loop | |
try: | |
loop = asyncio.get_event_loop() | |
except RuntimeError: | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
return loop.run_until_complete(async_process()) | |
# Update the interface creation to pass the control object | |
def create_interface(): | |
control = ProcessControl() | |
with gr.Blocks(theme=gr.themes.Soft()) as app: | |
# Create state for file data | |
current_file = gr.State(None) | |
gr.Markdown("# AI-анализ мониторинга новостей v.2.24a + extn") | |
with gr.Row(): | |
file_input = gr.File( | |
label="Загрузите Excel файл", | |
file_types=[".xlsx"], | |
type="binary" | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
analyze_btn = gr.Button( | |
"▶️ Начать анализ", | |
variant="primary", | |
size="lg" | |
) | |
with gr.Column(scale=1): | |
stop_btn = gr.Button( | |
"⏹️ Остановить", | |
variant="stop", | |
size="lg" | |
) | |
with gr.Row(): | |
status_box = gr.Textbox( | |
label="Статус дедупликации", | |
interactive=False, | |
value="" | |
) | |
with gr.Row(): | |
progress = gr.Textbox( | |
label="Статус обработки", | |
interactive=False, | |
value="Ожидание файла..." | |
) | |
with gr.Row(): | |
stats = gr.DataFrame( | |
label="Результаты анализа", | |
interactive=False, | |
wrap=True | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
sentiment_plot = gr.Plot(label="Распределение тональности") | |
with gr.Column(scale=1): | |
events_plot = gr.Plot(label="Распределение событий") | |
with gr.Row(): | |
file_output = gr.File( | |
label="Скачать результаты", | |
visible=True, | |
interactive=True | |
) | |
def stop_processing(): | |
control.request_stop() | |
return "Остановка обработки..." | |
stop_btn.click(fn=stop_processing, outputs=[progress]) | |
# Main processing with control object passed | |
analyze_btn.click( | |
fn=lambda x: process_and_download(x, control), | |
inputs=[file_input], | |
outputs=[ | |
stats, | |
sentiment_plot, | |
events_plot, | |
file_output, | |
progress, | |
status_box | |
] | |
) | |
return app | |
if __name__ == "__main__": | |
app = create_interface() | |
app.launch(share=True) |