Update app.py
Browse files
app.py
CHANGED
@@ -4,12 +4,16 @@ from transformers import AutoModelForImageSegmentation
|
|
4 |
from PIL import Image
|
5 |
from torchvision import transforms
|
6 |
import gradio as gr
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
13 |
|
14 |
# Preprocessing
|
15 |
image_size = (1024, 1024)
|
@@ -19,19 +23,20 @@ transform_image = transforms.Compose([
|
|
19 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
20 |
])
|
21 |
|
22 |
-
def run_inference(images):
|
23 |
-
# Convert all images into a batch tensor
|
24 |
inputs = []
|
25 |
original_sizes = []
|
26 |
for img in images:
|
27 |
original_sizes.append(img.size)
|
28 |
inputs.append(transform_image(img))
|
29 |
input_tensor = torch.stack(inputs).to(device)
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
35 |
# Post-process
|
36 |
results = []
|
37 |
for i, img in enumerate(images):
|
@@ -41,43 +46,49 @@ def run_inference(images):
|
|
41 |
result = Image.new("RGBA", original_sizes[i], (0, 0, 0, 0))
|
42 |
result.paste(img, mask=mask)
|
43 |
results.append(result)
|
|
|
|
|
|
|
|
|
44 |
return results
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
def extract_objects(filepaths):
|
47 |
images = [Image.open(p).convert("RGB") for p in filepaths]
|
48 |
start_time = time.time()
|
49 |
|
50 |
-
#
|
51 |
try:
|
52 |
-
results = run_inference(images)
|
53 |
end_time = time.time()
|
54 |
total_time = end_time - start_time
|
55 |
summary = f"Total request time: {total_time:.2f}s\nProcessed {len(images)} images successfully."
|
56 |
return results, summary
|
57 |
except torch.OutOfMemoryError:
|
58 |
-
#
|
59 |
-
|
60 |
-
|
61 |
-
fail_time = time.time()
|
62 |
-
initial_attempt_time = fail_time - start_time
|
63 |
-
|
64 |
-
# Binary search to find max feasible batch size
|
65 |
-
low, high = 1, len(images)
|
66 |
-
best = None
|
67 |
-
best_count = 0
|
68 |
|
69 |
-
|
70 |
-
mid = (low + high) // 2
|
71 |
-
batch = images[:mid]
|
72 |
-
try:
|
73 |
-
res = run_inference(batch)
|
74 |
-
best = res
|
75 |
-
best_count = mid
|
76 |
-
low = mid + 1 # try bigger
|
77 |
-
except torch.OutOfMemoryError:
|
78 |
-
torch.cuda.empty_cache()
|
79 |
-
high = mid - 1 # try smaller
|
80 |
-
|
81 |
end_time = time.time()
|
82 |
total_time = end_time - start_time
|
83 |
|
@@ -86,14 +97,14 @@ def extract_objects(filepaths):
|
|
86 |
summary = (
|
87 |
f"Initial attempt OOM after {initial_attempt_time:.2f}s.\n"
|
88 |
f"Could not process even a single image.\n"
|
89 |
-
f"Total time
|
90 |
)
|
91 |
return [], summary
|
92 |
else:
|
93 |
summary = (
|
94 |
-
f"Initial attempt OOM after {initial_attempt_time:.2f}s
|
95 |
-
f"
|
96 |
-
f"Total time including fallback: {total_time:.2f}s.\n"
|
97 |
f"Next time, try using up to {best_count} images."
|
98 |
)
|
99 |
return best, summary
|
@@ -103,7 +114,7 @@ iface = gr.Interface(
|
|
103 |
inputs=gr.Files(label="Upload Multiple Images", type="filepath", file_count="multiple"),
|
104 |
outputs=[gr.Gallery(label="Processed Images"), gr.Textbox(label="Timing Info")],
|
105 |
title="BiRefNet Bulk Background Removal with On-Demand Fallback",
|
106 |
-
description="Upload as many images as you want. If OOM occurs, a
|
107 |
)
|
108 |
|
109 |
iface.launch()
|
|
|
4 |
from PIL import Image
|
5 |
from torchvision import transforms
|
6 |
import gradio as gr
|
7 |
+
import gc
|
8 |
|
9 |
+
def load_model():
|
10 |
+
model = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/BiRefNet_lite', trust_remote_code=True)
|
11 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
12 |
+
model.to(device)
|
13 |
+
model.eval()
|
14 |
+
return model, device
|
15 |
+
|
16 |
+
birefnet, device = load_model()
|
17 |
|
18 |
# Preprocessing
|
19 |
image_size = (1024, 1024)
|
|
|
23 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
24 |
])
|
25 |
|
26 |
+
def run_inference(images, model, device):
|
|
|
27 |
inputs = []
|
28 |
original_sizes = []
|
29 |
for img in images:
|
30 |
original_sizes.append(img.size)
|
31 |
inputs.append(transform_image(img))
|
32 |
input_tensor = torch.stack(inputs).to(device)
|
33 |
+
try:
|
34 |
+
with torch.no_grad():
|
35 |
+
preds = model(input_tensor)[-1].sigmoid().cpu()
|
36 |
+
except torch.OutOfMemoryError:
|
37 |
+
del input_tensor
|
38 |
+
torch.cuda.empty_cache()
|
39 |
+
raise
|
40 |
# Post-process
|
41 |
results = []
|
42 |
for i, img in enumerate(images):
|
|
|
46 |
result = Image.new("RGBA", original_sizes[i], (0, 0, 0, 0))
|
47 |
result.paste(img, mask=mask)
|
48 |
results.append(result)
|
49 |
+
# Cleanup
|
50 |
+
del input_tensor, preds
|
51 |
+
gc.collect()
|
52 |
+
torch.cuda.empty_cache()
|
53 |
return results
|
54 |
|
55 |
+
def binary_search_max(images):
|
56 |
+
# After OOM, try to find max feasible batch
|
57 |
+
low, high = 1, len(images)
|
58 |
+
best = None
|
59 |
+
best_count = 0
|
60 |
+
while low <= high:
|
61 |
+
mid = (low + high) // 2
|
62 |
+
batch = images[:mid]
|
63 |
+
try:
|
64 |
+
# Re-load model to avoid leftover memory fragmentation
|
65 |
+
global birefnet, device
|
66 |
+
birefnet, device = load_model()
|
67 |
+
res = run_inference(batch, birefnet, device)
|
68 |
+
best = res
|
69 |
+
best_count = mid
|
70 |
+
low = mid + 1
|
71 |
+
except torch.OutOfMemoryError:
|
72 |
+
high = mid - 1
|
73 |
+
return best, best_count
|
74 |
+
|
75 |
def extract_objects(filepaths):
|
76 |
images = [Image.open(p).convert("RGB") for p in filepaths]
|
77 |
start_time = time.time()
|
78 |
|
79 |
+
# First attempt: all images
|
80 |
try:
|
81 |
+
results = run_inference(images, birefnet, device)
|
82 |
end_time = time.time()
|
83 |
total_time = end_time - start_time
|
84 |
summary = f"Total request time: {total_time:.2f}s\nProcessed {len(images)} images successfully."
|
85 |
return results, summary
|
86 |
except torch.OutOfMemoryError:
|
87 |
+
# OOM occurred, try to find feasible batch size now
|
88 |
+
oom_time = time.time()
|
89 |
+
initial_attempt_time = oom_time - start_time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
best, best_count = binary_search_max(images)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
end_time = time.time()
|
93 |
total_time = end_time - start_time
|
94 |
|
|
|
97 |
summary = (
|
98 |
f"Initial attempt OOM after {initial_attempt_time:.2f}s.\n"
|
99 |
f"Could not process even a single image.\n"
|
100 |
+
f"Total time including fallback attempts: {total_time:.2f}s."
|
101 |
)
|
102 |
return [], summary
|
103 |
else:
|
104 |
summary = (
|
105 |
+
f"Initial attempt OOM after {initial_attempt_time:.2f}s.\n"
|
106 |
+
f"Found that {best_count} images can be processed without OOM.\n"
|
107 |
+
f"Total time including fallback attempts: {total_time:.2f}s.\n"
|
108 |
f"Next time, try using up to {best_count} images."
|
109 |
)
|
110 |
return best, summary
|
|
|
114 |
inputs=gr.Files(label="Upload Multiple Images", type="filepath", file_count="multiple"),
|
115 |
outputs=[gr.Gallery(label="Processed Images"), gr.Textbox(label="Timing Info")],
|
116 |
title="BiRefNet Bulk Background Removal with On-Demand Fallback",
|
117 |
+
description="Upload as many images as you want. If OOM occurs, a fallback will find the max feasible number. Extra cleanup steps and reinitialization for more consistent results."
|
118 |
)
|
119 |
|
120 |
iface.launch()
|