Spaces:
Running
Running
import os | |
import chromadb | |
import gradio as gr | |
from dotenv import load_dotenv | |
from openai import OpenAI | |
from langchain_community.embeddings import AnyscaleEmbeddings | |
from langchain_community.vectorstores import Chroma | |
from pydantic import BaseModel | |
from typing import Optional, List | |
class Message(BaseModel): | |
role: str | |
content: str | |
qna_system_message = """ | |
You are an assistant to an insurance firm who answers customer queries based on their insurance policy documents. | |
User input will have the context required by you to answer customer questions. | |
This context will begin with the word: ###Context. | |
The context contains references to specific portions of a document relevant to the customer query. | |
Customer questions will begin with the word: ###Question. | |
Information about the customer will begin with the word: ###Customer Information | |
Please answer user questions ONLY using the context provided in the input and the customer information. | |
DO NOT mention anything about the context in your final answer. | |
Your response should only contain the answer to the question AND NOTHING ELSE. | |
DO NOT answer any questions about customers whose details are different from those mentioned in ###Customer Information. | |
If the answer is not found in the context or in the customer information, respond "Sorry, I cannot answer your query at this point, please contact our hotline: 1-800-INSURANCE". | |
""" | |
qna_user_message_template = """ | |
###Customer Information | |
Customer Name: John Doe | |
Policy Number: NBHTGBP22011V012223# | |
Premium Amount: $15000 | |
Number of premium installments: 5 | |
Number of installments paid: 3 | |
Last Premium Paid: Yes | |
Last Premium Date: 2024-05-12 | |
###Context | |
Here are some documents that are relevant to the question mentioned below. | |
{context} | |
###Question | |
{question} | |
""" | |
load_dotenv() | |
anyscale_api_key = os.environ['ANYSCALE_API_KEY'] | |
client = OpenAI( | |
base_url="https://api.endpoints.anyscale.com/v1", | |
api_key=anyscale_api_key | |
) | |
qna_model = 'meta-llama/Meta-Llama-3-8B-Instruct' | |
embedding_model = AnyscaleEmbeddings( | |
client=client, | |
model='thenlper/gte-large' | |
) | |
chromadb_client = chromadb.PersistentClient(path='./policy_db') | |
vectorstore_persisted = Chroma( | |
client=chromadb_client, | |
collection_name="policy-text", | |
embedding_function=embedding_model | |
) | |
retriever = vectorstore_persisted.as_retriever( | |
search_type='similarity', | |
search_kwargs={'k': 5} | |
) | |
def make_completion(input:str, history: List[Message]) -> Optional[str]: | |
relevant_document_chunks = retriever.invoke(input) | |
context_list = [d.page_content for d in relevant_document_chunks] | |
context_for_query = "\n".join(context_list) | |
user_message = [{ | |
'role': 'user', | |
'content': qna_user_message_template.format( | |
context=context_for_query, | |
question=input | |
) | |
}] | |
prompt = [{'role':'system', 'content': qna_system_message}] + history + user_message | |
try: | |
response = client.chat.completions.create( | |
model=qna_model, | |
messages=prompt, | |
temperature=0 | |
) | |
prediction = response.choices[0].message.content.strip() | |
except Exception as e: | |
prediction = f'Sorry, I cannot answer your query at this point, please contact our hotline: 1-800-INSURANCE' | |
return prediction | |
def predict(input: str, history: List[Message]): | |
""" | |
Predict the response of the chatbot and complete a running list of chat history. | |
""" | |
response = make_completion(input, history) | |
history.append({"role": "user", "content": input}) | |
history.append({"role": "assistant", "content": response}) | |
messages = [ | |
(history[i]["content"], history[i+1]["content"]) | |
for i in range(0, len(history)-1, 2) | |
] | |
return messages, history | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot(label="CHAT", layout="bubble", likeable=True, show_copy_button=True) | |
state = gr.State([]) | |
with gr.Row(): | |
txt = gr.Textbox(show_label=True, placeholder="Enter your query and press enter") | |
txt.submit(predict, [txt, state], [chatbot, state]) | |
demo.launch(auth=("demouser", os.getenv('PASSWD'))) |