Spaces:
Runtime error
Runtime error
import os | |
os.system('pip install pip --upgrade') | |
os.system('pip install -q git+https://github.com/huggingface/transformers.git') | |
os.system("pip install pyyaml==5.1") | |
# workaround: install old version of pytorch since detectron2 hasn't released packages for pytorch 1.9 (issue: https://github.com/facebookresearch/detectron2/issues/3158) | |
os.system("pip install torch==1.8.0+cu101 torchvision==0.9.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html") | |
# install detectron2 that matches pytorch 1.8 | |
# See https://detectron2.readthedocs.io/tutorials/install.html for instructions | |
os.system( | |
"pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html" | |
) | |
## install PyTesseract | |
os.system("pip install -q pytesseract") | |
import gradio as gr | |
import numpy as np | |
from transformers import AutoModelForTokenClassification | |
from datasets.features import ClassLabel | |
from transformers import AutoProcessor | |
from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D | |
import torch | |
from datasets import load_metric | |
from transformers import LayoutLMv3ForTokenClassification | |
from transformers.data.data_collator import default_data_collator | |
from transformers import AutoModelForTokenClassification | |
from datasets import load_dataset | |
from PIL import Image, ImageDraw, ImageFont | |
processor = AutoProcessor.from_pretrained("jinhybr/OCR-LayoutLMv3-Invoice", apply_ocr=True) | |
model = AutoModelForTokenClassification.from_pretrained("jinhybr/OCR-LayoutLMv3-Invoice") | |
# load image example | |
dataset = load_dataset("jinhybr/WildReceipt", split="test") | |
Image.open(dataset[1]["image_path"]).convert("RGB").save("example1.png") | |
Image.open(dataset[3]["image_path"]).convert("RGB").save("example2.png") | |
Image.open(dataset[25]["image_path"]).convert("RGB").save("example3.png") | |
# define id2label, label2color | |
labels = dataset.features['ner_tags'].feature.names | |
id2label = {v: k for v, k in enumerate(labels)} | |
label2color = { | |
"Date_key": 'red', | |
"Date_value": 'green', | |
"Ignore": 'orange', | |
"Others": 'orange', | |
"Prod_item_key": 'red', | |
"Prod_item_value": 'green', | |
"Prod_price_key": 'red', | |
"Prod_price_value": 'green', | |
"Prod_quantity_key": 'red', | |
"Prod_quantity_value": 'green', | |
"Store_addr_key": 'red', | |
"Store_addr_value": 'green', | |
"Store_name_key": 'red', | |
"Store_name_value": 'green', | |
"Subtotal_key": 'red', | |
"Subtotal_value": 'green', | |
"Tax_key": 'red', | |
"Tax_value": 'green', | |
"Tel_key": 'red', | |
"Tel_value": 'green', | |
"Time_key": 'red', | |
"Time_value": 'green', | |
"Tips_key": 'red', | |
"Tips_value": 'green', | |
"Total_key": 'red', | |
"Total_value": 'blue' | |
} | |
def unnormalize_box(bbox, width, height): | |
return [ | |
width * (bbox[0] / 1000), | |
height * (bbox[1] / 1000), | |
width * (bbox[2] / 1000), | |
height * (bbox[3] / 1000), | |
] | |
def iob_to_label(label): | |
return label | |
def process_image(image): | |
print(type(image)) | |
width, height = image.size | |
# encode | |
encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt") | |
offset_mapping = encoding.pop('offset_mapping') | |
# forward pass | |
outputs = model(**encoding) | |
# get predictions | |
predictions = outputs.logits.argmax(-1).squeeze().tolist() | |
token_boxes = encoding.bbox.squeeze().tolist() | |
# only keep non-subword predictions | |
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0 | |
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]] | |
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]] | |
# draw predictions over the image | |
draw = ImageDraw.Draw(image) | |
font = ImageFont.load_default() | |
for prediction, box in zip(true_predictions, true_boxes): | |
predicted_label = iob_to_label(prediction) | |
draw.rectangle(box, outline=label2color[predicted_label]) | |
draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font) | |
# Print label and value | |
label_text = f"Label: {predicted_label}" | |
value_text = f"Value: {prediction}" | |
print(label_text) | |
print(value_text) | |
print("------") | |
return image | |
title = "OCR Invoice - Information Extraction - LayoutLMv3" | |
description = "Fine-tuned Microsoft's LayoutLMv3 on WildReceipt Dataset to parse Invoice OCR document. To use it, simply upload an image or use the example image below. Results will show up in a few seconds." | |
article="<b>References</b><br>[1] Y. Xu et al., “LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking.” 2022. <a href='https://arxiv.org/abs/2204.08387'>Paper Link</a><br>[2] <a href='https://github.com/NielsRogge/Transformers-Tutorials/tree/master/LayoutLMv3'>LayoutLMv3 training and inference</a><br>[3] Hongbin Sun, Zhanghui Kuang, Xiaoyu Yue, Chenhao Lin, and Wayne Zhang. 2021. Spatial Dual-Modality Graph Reasoning for Key Information Extraction. arXiv. DOI:https://doi.org/10.48550/ARXIV.2103.14470 <a href='https://doi.org/10.48550/ARXIV.2103.14470'>Paper Link</a>" | |
examples =[['example1.png'],['example2.png'],['example3.png'],['inv2.jpg']] | |
css = """.output_image, .input_image {height: 600px !important}""" | |
iface = gr.Interface(fn=process_image, | |
inputs=gr.inputs.Image(type="pil"), | |
outputs=gr.outputs.Image(type="pil", label="annotated image"), | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
css=css, | |
analytics_enabled = True, enable_queue=True) | |
iface.launch(inline=False, share=False, debug=True) | |