Spaces:
Sleeping
Sleeping
first commit
Browse files- app.py +118 -0
- requirements.txt +1 -0
app.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
License:
|
3 |
+
Unless required by applicable law or agreed to in writing, software
|
4 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
5 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
6 |
+
In no event shall the authors or copyright holders be liable
|
7 |
+
for any claim, damages or other liability, whether in an action of contract,otherwise,
|
8 |
+
arising from, out of or in connection with the software or the use or
|
9 |
+
other dealings in the software.
|
10 |
+
|
11 |
+
Copyright (c) 2024 pi19404. All rights reserved.
|
12 |
+
|
13 |
+
Authors:
|
14 |
+
pi19404 <pi19404@gmail.com>
|
15 |
+
"""
|
16 |
+
|
17 |
+
|
18 |
+
"""
|
19 |
+
Gradio Interface for Shield Gemma LLM Evaluator
|
20 |
+
|
21 |
+
This module provides a Gradio interface to interact with the Shield Gemma LLM Evaluator.
|
22 |
+
It allows users to input JSON data and select various options to evaluate the content
|
23 |
+
for policy violations.
|
24 |
+
|
25 |
+
Functions:
|
26 |
+
my_inference_function: The main inference function to process input data and return results.
|
27 |
+
"""
|
28 |
+
|
29 |
+
import gradio as gr
|
30 |
+
from gradio_client import Client
|
31 |
+
import torch
|
32 |
+
import json
|
33 |
+
import threading
|
34 |
+
import os
|
35 |
+
|
36 |
+
API_TOKEN=os.getenv("API_TOKEN")
|
37 |
+
|
38 |
+
lock = threading.Lock()
|
39 |
+
client = Client("pi19404/ai-worker",hf_token=API_TOKEN)
|
40 |
+
|
41 |
+
def my_inference_function(input_data, output_data,mode, max_length, max_new_tokens, model_size):
|
42 |
+
"""
|
43 |
+
The main inference function to process input data and return results.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
input_data (str or dict): The input data in JSON format.
|
47 |
+
mode (str): The mode of operation ("scoring" or "generative").
|
48 |
+
max_length (int): The maximum length of the input prompt.
|
49 |
+
max_new_tokens (int): The maximum number of new tokens to generate.
|
50 |
+
model_size (str): The size of the model to be used.
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
str: The output data in JSON format.
|
54 |
+
"""
|
55 |
+
with lock:
|
56 |
+
try:
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
result = client.predict(
|
61 |
+
input_data=input_data,
|
62 |
+
output_data=output_data,
|
63 |
+
mode=mode,
|
64 |
+
max_length=max_length,
|
65 |
+
max_new_tokens=max_new_tokens,
|
66 |
+
model_size=model_size,
|
67 |
+
api_name="/my_inference_function"
|
68 |
+
)
|
69 |
+
print(result)
|
70 |
+
print("entering return",result)
|
71 |
+
return result # Pretty-print the JSON
|
72 |
+
except json.JSONDecodeError:
|
73 |
+
return json.dumps({"error": "Invalid JSON input"})
|
74 |
+
except KeyError:
|
75 |
+
return json.dumps({"error": "Missing 'input' key in JSON"})
|
76 |
+
except ValueError as e:
|
77 |
+
return json.dumps({"error": str(e)})
|
78 |
+
|
79 |
+
with gr.Blocks() as demo:
|
80 |
+
gr.Markdown("## LLM Safety Evaluation")
|
81 |
+
|
82 |
+
with gr.Tab("ShieldGemma2"):
|
83 |
+
input_text = gr.Textbox(label="Input Text")
|
84 |
+
output_text = gr.Textbox(
|
85 |
+
label="Response Text",
|
86 |
+
lines=5,
|
87 |
+
max_lines=10,
|
88 |
+
show_copy_button=True,
|
89 |
+
elem_classes=["wrap-text"]
|
90 |
+
)
|
91 |
+
mode_input = gr.Dropdown(choices=["scoring", "generative"], label="Prediction Mode")
|
92 |
+
max_length_input = gr.Number(label="Max Length", value=150)
|
93 |
+
max_new_tokens_input = gr.Number(label="Max New Tokens", value=1024)
|
94 |
+
model_size_input = gr.Dropdown(choices=["2B", "9B", "27B"], label="Model Size")
|
95 |
+
response_text = gr.Textbox(
|
96 |
+
label="Output Text",
|
97 |
+
lines=10,
|
98 |
+
max_lines=20,
|
99 |
+
show_copy_button=True,
|
100 |
+
elem_classes=["wrap-text"]
|
101 |
+
)
|
102 |
+
text_button = gr.Button("Submit")
|
103 |
+
text_button.click(fn=my_inference_function, inputs=[input_text, output_text, mode_input, max_length_input, max_new_tokens_input, model_size_input], outputs=response_text)
|
104 |
+
|
105 |
+
# with gr.Tab("API Input"):
|
106 |
+
# api_input = gr.JSON(label="Input JSON")
|
107 |
+
# mode_input_api = gr.Dropdown(choices=["scoring", "generative"], label="Mode")
|
108 |
+
# max_length_input_api = gr.Number(label="Max Length", value=150)
|
109 |
+
# max_new_tokens_input_api = gr.Number(label="Max New Tokens", value=None)
|
110 |
+
# model_size_input_api = gr.Dropdown(choices=["2B", "9B", "27B"], label="Model Size")
|
111 |
+
# api_output = gr.JSON(label="Output JSON")
|
112 |
+
# api_button = gr.Button("Submit")
|
113 |
+
# api_button.click(fn=my_inference_function, inputs=[api_input, api_output,mode_input_api, max_length_input_api, max_new_tokens_input_api, model_size_input_api], outputs=api_output)
|
114 |
+
|
115 |
+
demo.launch(share=True)
|
116 |
+
|
117 |
+
|
118 |
+
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
gradio_client
|