import re import gradio as gr from dataclasses import dataclass from prettytable import PrettyTable from pytorch_ie.annotations import LabeledSpan, BinaryRelation from pytorch_ie.auto import AutoPipeline from pytorch_ie.core import AnnotationList, annotation_field from pytorch_ie.documents import TextBasedDocument from pytorch_ie.taskmodules import * from pytorch_ie.models import * from typing import List @dataclass class ExampleDocument(TextBasedDocument): entities: AnnotationList[LabeledSpan] = annotation_field(target="text") relations: AnnotationList[BinaryRelation] = annotation_field(target="entities") ner_model_name_or_path = "pie/example-ner-spanclf-conll03" re_model_name_or_path = "pie/example-re-textclf-tacred" ner_pipeline = AutoPipeline.from_pretrained(ner_model_name_or_path, device=-1, num_workers=0) re_pipeline = AutoPipeline.from_pretrained(re_model_name_or_path, device=-1, num_workers=0, taskmodule_kwargs=dict(create_relation_candidates=True)) def predict(text): document = ExampleDocument(text) # execute NER pipeline ner_pipeline(document) # show predicted entities and promote them from predictions to ground-truth annotations print(f"detected entities:") for entity in document.entities.predictions: print(f"'{entity}', label={entity.label}, score={entity.score}") document.entities.append(entity.copy()) # execute RE pipeline re_pipeline(document) t = PrettyTable() t.field_names = ["head", "tail", "relation"] t.align = "l" for relation in document.relations.predictions: t.add_row([str(relation.head), str(relation.tail), relation.label]) html = t.get_html_string(format=True) html = ( "