import re import gradio as gr from huggingface_hub import InferenceClient client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") system_instructions = "[SYSTEM] You will be provided with text, and your task is to classify task tasks are (text generation, image generation, pdf chat, image text to text, image classification, summarization, translation , tts) answer with only task do not say anything else and stop as soon as possible. [USER]" def classify_task(prompt): generate_kwargs = dict( temperature=0.5, max_new_tokens=5, top_p=0.7, repetition_penalty=1.2, do_sample=True, seed=42, ) formatted_prompt = system_instructions + prompt + "[BOT]" stream = client.text_generation( formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: if not response.token.text == "": output += response.token.text return output # Create the Gradio interface with gr.Blocks() as demo: with gr.Row(): text_uesr_input = gr.Textbox(label="Enter text 📚") output = gr.Textbox(label="Translation") with gr.Row(): translate_btn = gr.Button("Translate 🚀") translate_btn.click(fn=classify_task, inputs=text_uesr_input, outputs=output, api_name="translate_text") # Launch the app if __name__ == "__main__": demo.launch()