File size: 11,397 Bytes
6a62ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import logging
import os
import typing as tp
from abc import ABC, abstractmethod
from collections import Counter
from dataclasses import dataclass
from multiprocessing import Pool

import torch

from fairseq.data import Dictionary, indexed_dataset
from fairseq.file_chunker_utils import Chunker, find_offsets
from fairseq.file_io import PathManager
from fairseq.tokenizer import tokenize_line

logger = logging.getLogger("binarizer")


@dataclass
class BinarizeSummary:
    """
    Keep track of what's going on in the binarizer
    """

    num_seq: int = 0
    replaced: tp.Optional[Counter] = None
    num_tok: int = 0

    @property
    def num_replaced(self) -> int:
        if self.replaced is None:
            return 0
        return sum(self.replaced.values())

    @property
    def replaced_percent(self) -> float:
        return 100 * self.num_replaced / self.num_tok

    def __str__(self) -> str:
        base = f"{self.num_seq} sents, {self.num_tok} tokens"
        if self.replaced is None:
            return base

        return f"{base}, {self.replaced_percent:.3}% replaced"

    def merge(self, other: "BinarizeSummary"):
        replaced = None
        if self.replaced is not None:
            replaced = self.replaced
        if other.replaced is not None:
            if replaced is None:
                replaced = other.replaced
            else:
                replaced += other.replaced
        self.replaced = replaced
        self.num_seq += other.num_seq
        self.num_tok += other.num_tok


class Binarizer(ABC):
    """
    a binarizer describes how to take a string and build a tensor out of it
    """

    @abstractmethod
    def binarize_line(
        self,
        line: str,
        summary: BinarizeSummary,
    ) -> torch.IntTensor:
        ...


def _worker_prefix(output_prefix: str, worker_id: int):
    return f"{output_prefix}.pt{worker_id}"


class FileBinarizer:
    """
    An file binarizer can take a file, tokenize it, and binarize each line to a tensor
    """

    @classmethod
    def multiprocess_dataset(
        cls,
        input_file: str,
        dataset_impl: str,
        binarizer: Binarizer,
        output_prefix: str,
        vocab_size=None,
        num_workers=1,
    ) -> BinarizeSummary:
        final_summary = BinarizeSummary()

        offsets = find_offsets(input_file, num_workers)
        # find_offsets returns a list of position [pos1, pos2, pos3, pos4] but we would want pairs:
        # [(pos1, pos2), (pos2, pos3), (pos3, pos4)] to process the chunks with start/end info
        # we zip the list with itself shifted by one to get all the pairs.
        (first_chunk, *more_chunks) = zip(offsets, offsets[1:])
        pool = None
        if num_workers > 1:
            pool = Pool(processes=num_workers - 1)
            worker_results = [
                pool.apply_async(
                    cls._binarize_chunk_and_finalize,
                    args=(
                        binarizer,
                        input_file,
                        start_offset,
                        end_offset,
                        _worker_prefix(
                            output_prefix,
                            worker_id,
                        ),
                        dataset_impl,
                    ),
                    kwds={
                        "vocab_size": vocab_size,
                    }
                    if vocab_size is not None
                    else {},
                )
                for worker_id, (start_offset, end_offset) in enumerate(
                    more_chunks, start=1
                )
            ]

            pool.close()
            pool.join()
            for r in worker_results:
                summ = r.get()
                final_summary.merge(summ)

        # do not close the bin file as we need to merge the worker results in
        final_ds, summ = cls._binarize_file_chunk(
            binarizer,
            input_file,
            offset_start=first_chunk[0],
            offset_end=first_chunk[1],
            output_prefix=output_prefix,
            dataset_impl=dataset_impl,
            vocab_size=vocab_size if vocab_size is not None else None,
        )
        final_summary.merge(summ)

        if num_workers > 1:
            for worker_id in range(1, num_workers):
                # merge the worker outputs
                worker_output_prefix = _worker_prefix(
                    output_prefix,
                    worker_id,
                )
                final_ds.merge_file_(worker_output_prefix)
                try:
                    os.remove(indexed_dataset.data_file_path(worker_output_prefix))
                    os.remove(indexed_dataset.index_file_path(worker_output_prefix))
                except Exception as e:
                    logger.error(
                        f"couldn't remove {worker_output_prefix}.*", exc_info=e
                    )

        #  now we can close the file
        idx_file = indexed_dataset.index_file_path(output_prefix)
        final_ds.finalize(idx_file)
        return final_summary

    @staticmethod
    def _binarize_file_chunk(
        binarizer: Binarizer,
        filename: str,
        offset_start: int,
        offset_end: int,
        output_prefix: str,
        dataset_impl: str,
        vocab_size=None,
    ) -> tp.Tuple[tp.Any, BinarizeSummary]:  # (dataset builder, BinarizeSummary)
        """
        creates a dataset builder and append binarized items to it. This function does not
        finalize the builder, this is useful if you want to do other things with your bin file
        like appending/merging other files
        """
        bin_file = indexed_dataset.data_file_path(output_prefix)
        ds = indexed_dataset.make_builder(
            bin_file,
            impl=dataset_impl,
            vocab_size=vocab_size,
        )
        summary = BinarizeSummary()

        with Chunker(
            PathManager.get_local_path(filename), offset_start, offset_end
        ) as line_iterator:
            for line in line_iterator:
                ds.add_item(binarizer.binarize_line(line, summary))

        return ds, summary

    @classmethod
    def _binarize_chunk_and_finalize(
        cls,
        binarizer: Binarizer,
        filename: str,
        offset_start: int,
        offset_end: int,
        output_prefix: str,
        dataset_impl: str,
        vocab_size=None,
    ):
        """
        same as above, but also finalizes the builder
        """
        ds, summ = cls._binarize_file_chunk(
            binarizer,
            filename,
            offset_start,
            offset_end,
            output_prefix,
            dataset_impl,
            vocab_size=vocab_size,
        )

        idx_file = indexed_dataset.index_file_path(output_prefix)
        ds.finalize(idx_file)

        return summ


class VocabularyDatasetBinarizer(Binarizer):
    """
    Takes a Dictionary/Vocabulary, assign ids to each
    token using the dictionary encode_line function.
    """

    def __init__(
        self,
        dict: Dictionary,
        tokenize: tp.Callable[[str], tp.List[str]] = tokenize_line,
        append_eos: bool = True,
        reverse_order: bool = False,
        already_numberized: bool = False,
    ) -> None:
        self.dict = dict
        self.tokenize = tokenize
        self.append_eos = append_eos
        self.reverse_order = reverse_order
        self.already_numberized = already_numberized
        super().__init__()

    def binarize_line(
        self,
        line: str,
        summary: BinarizeSummary,
    ):
        if summary.replaced is None:
            summary.replaced = Counter()

        def replaced_consumer(word, idx):
            if idx == self.dict.unk_index and word != self.dict.unk_word:
                summary.replaced.update([word])

        if self.already_numberized:
            id_strings = line.strip().split()
            id_list = [int(id_string) for id_string in id_strings]
            if self.reverse_order:
                id_list.reverse()
            if self.append_eos:
                id_list.append(self.dict.eos())
            ids = torch.IntTensor(id_list)
        else:
            ids = self.dict.encode_line(
                line=line,
                line_tokenizer=self.tokenize,
                add_if_not_exist=False,
                consumer=replaced_consumer,
                append_eos=self.append_eos,
                reverse_order=self.reverse_order,
            )

        summary.num_seq += 1
        summary.num_tok += len(ids)
        return ids


class AlignmentDatasetBinarizer(Binarizer):
    """
    binarize by parsing a set of alignments and packing
    them in a tensor (see utils.parse_alignment)
    """

    def __init__(
        self,
        alignment_parser: tp.Callable[[str], torch.IntTensor],
    ) -> None:
        super().__init__()
        self.alignment_parser = alignment_parser

    def binarize_line(
        self,
        line: str,
        summary: BinarizeSummary,
    ):
        ids = self.alignment_parser(line)
        summary.num_seq += 1
        summary.num_tok += len(ids)
        return ids


class LegacyBinarizer:
    @classmethod
    def binarize(
        cls,
        filename: str,
        dico: Dictionary,
        consumer: tp.Callable[[torch.IntTensor], None],
        tokenize: tp.Callable[[str], tp.List[str]] = tokenize_line,
        append_eos: bool = True,
        reverse_order: bool = False,
        offset: int = 0,
        end: int = -1,
        already_numberized: bool = False,
    ) -> tp.Dict[str, int]:
        binarizer = VocabularyDatasetBinarizer(
            dict=dico,
            tokenize=tokenize,
            append_eos=append_eos,
            reverse_order=reverse_order,
            already_numberized=already_numberized,
        )
        return cls._consume_file(
            filename,
            binarizer,
            consumer,
            offset_start=offset,
            offset_end=end,
        )

    @classmethod
    def binarize_alignments(
        cls,
        filename: str,
        alignment_parser: tp.Callable[[str], torch.IntTensor],
        consumer: tp.Callable[[torch.IntTensor], None],
        offset: int = 0,
        end: int = -1,
    ) -> tp.Dict[str, int]:
        binarizer = AlignmentDatasetBinarizer(alignment_parser)
        return cls._consume_file(
            filename,
            binarizer,
            consumer,
            offset_start=offset,
            offset_end=end,
        )

    @staticmethod
    def _consume_file(
        filename: str,
        binarizer: Binarizer,
        consumer: tp.Callable[[torch.IntTensor], None],
        offset_start: int,
        offset_end: int,
    ) -> tp.Dict[str, int]:
        summary = BinarizeSummary()

        with Chunker(
            PathManager.get_local_path(filename), offset_start, offset_end
        ) as line_iterator:
            for line in line_iterator:
                consumer(binarizer.binarize_line(line, summary))

        return {
            "nseq": summary.num_seq,
            "nunk": summary.num_replaced,
            "ntok": summary.num_tok,
            "replaced": summary.replaced,
        }