File size: 13,679 Bytes
6a62ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.


import logging
import os
import sys
import io

import numpy as np
import torch
import torch.nn.functional as F

from .. import FairseqDataset
from ..data_utils import compute_mask_indices, get_buckets, get_bucketed_sizes
from fairseq.data.audio.audio_utils import (
    parse_path,
    read_from_stored_zip,
    is_sf_audio_data,
)
from fairseq.data.text_compressor import TextCompressor, TextCompressionLevel


logger = logging.getLogger(__name__)


class RawAudioDataset(FairseqDataset):
    def __init__(
        self,
        sample_rate,
        max_sample_size=None,
        min_sample_size=0,
        shuffle=True,
        pad=False,
        normalize=False,
        compute_mask_indices=False,
        **mask_compute_kwargs,
    ):
        super().__init__()

        self.sample_rate = sample_rate
        self.sizes = []
        self.max_sample_size = (
            max_sample_size if max_sample_size is not None else sys.maxsize
        )
        self.min_sample_size = min_sample_size
        self.pad = pad
        self.shuffle = shuffle
        self.normalize = normalize
        self.compute_mask_indices = compute_mask_indices
        if self.compute_mask_indices:
            self.mask_compute_kwargs = mask_compute_kwargs
            self._features_size_map = {}
            self._C = mask_compute_kwargs["encoder_embed_dim"]
            self._conv_feature_layers = eval(mask_compute_kwargs["conv_feature_layers"])

    def __getitem__(self, index):
        raise NotImplementedError()

    def __len__(self):
        return len(self.sizes)

    def postprocess(self, feats, curr_sample_rate):
        if feats.dim() == 2:
            feats = feats.mean(-1)

        if curr_sample_rate != self.sample_rate:
            raise Exception(f"sample rate: {curr_sample_rate}, need {self.sample_rate}")

        assert feats.dim() == 1, feats.dim()

        if self.normalize:
            with torch.no_grad():
                feats = F.layer_norm(feats, feats.shape)
        return feats

    def crop_to_max_size(self, wav, target_size):
        size = len(wav)
        diff = size - target_size
        if diff <= 0:
            return wav

        start = np.random.randint(0, diff + 1)
        end = size - diff + start
        return wav[start:end]

    def _compute_mask_indices(self, dims, padding_mask):
        B, T, C = dims
        mask_indices, mask_channel_indices = None, None
        if self.mask_compute_kwargs["mask_prob"] > 0:
            mask_indices = compute_mask_indices(
                (B, T),
                padding_mask,
                self.mask_compute_kwargs["mask_prob"],
                self.mask_compute_kwargs["mask_length"],
                self.mask_compute_kwargs["mask_selection"],
                self.mask_compute_kwargs["mask_other"],
                min_masks=2,
                no_overlap=self.mask_compute_kwargs["no_mask_overlap"],
                min_space=self.mask_compute_kwargs["mask_min_space"],
            )
            mask_indices = torch.from_numpy(mask_indices)
        if self.mask_compute_kwargs["mask_channel_prob"] > 0:
            mask_channel_indices = compute_mask_indices(
                (B, C),
                None,
                self.mask_compute_kwargs["mask_channel_prob"],
                self.mask_compute_kwargs["mask_channel_length"],
                self.mask_compute_kwargs["mask_channel_selection"],
                self.mask_compute_kwargs["mask_channel_other"],
                no_overlap=self.mask_compute_kwargs["no_mask_channel_overlap"],
                min_space=self.mask_compute_kwargs["mask_channel_min_space"],
            )
            mask_channel_indices = (
                torch.from_numpy(mask_channel_indices).unsqueeze(1).expand(-1, T, -1)
            )

        return mask_indices, mask_channel_indices

    @staticmethod
    def _bucket_tensor(tensor, num_pad, value):
        return F.pad(tensor, (0, num_pad), value=value)

    def collater(self, samples):
        samples = [s for s in samples if s["source"] is not None]
        if len(samples) == 0:
            return {}

        sources = [s["source"] for s in samples]
        sizes = [len(s) for s in sources]

        if self.pad:
            target_size = min(max(sizes), self.max_sample_size)
        else:
            target_size = min(min(sizes), self.max_sample_size)

        collated_sources = sources[0].new_zeros(len(sources), target_size)
        padding_mask = (
            torch.BoolTensor(collated_sources.shape).fill_(False) if self.pad else None
        )
        for i, (source, size) in enumerate(zip(sources, sizes)):
            diff = size - target_size
            if diff == 0:
                collated_sources[i] = source
            elif diff < 0:
                assert self.pad
                collated_sources[i] = torch.cat(
                    [source, source.new_full((-diff,), 0.0)]
                )
                padding_mask[i, diff:] = True
            else:
                collated_sources[i] = self.crop_to_max_size(source, target_size)

        input = {"source": collated_sources}
        out = {"id": torch.LongTensor([s["id"] for s in samples])}
        if self.pad:
            input["padding_mask"] = padding_mask

        if hasattr(self, "num_buckets") and self.num_buckets > 0:
            assert self.pad, "Cannot bucket without padding first."
            bucket = max(self._bucketed_sizes[s["id"]] for s in samples)
            num_pad = bucket - collated_sources.size(-1)
            if num_pad:
                input["source"] = self._bucket_tensor(collated_sources, num_pad, 0)
                input["padding_mask"] = self._bucket_tensor(padding_mask, num_pad, True)

        if self.compute_mask_indices:
            B = input["source"].size(0)
            T = self._get_mask_indices_dims(input["source"].size(-1))
            padding_mask_reshaped = input["padding_mask"].clone()
            extra = padding_mask_reshaped.size(1) % T
            if extra > 0:
                padding_mask_reshaped = padding_mask_reshaped[:, :-extra]
            padding_mask_reshaped = padding_mask_reshaped.view(
                padding_mask_reshaped.size(0), T, -1
            )
            padding_mask_reshaped = padding_mask_reshaped.all(-1)
            input["padding_count"] = padding_mask_reshaped.sum(-1).max().item()
            mask_indices, mask_channel_indices = self._compute_mask_indices(
                (B, T, self._C),
                padding_mask_reshaped,
            )
            input["mask_indices"] = mask_indices
            input["mask_channel_indices"] = mask_channel_indices
            out["sample_size"] = mask_indices.sum().item()

        out["net_input"] = input
        return out

    def _get_mask_indices_dims(self, size, padding=0, dilation=1):
        if size not in self._features_size_map:
            L_in = size
            for (_, kernel_size, stride) in self._conv_feature_layers:
                L_out = L_in + 2 * padding - dilation * (kernel_size - 1) - 1
                L_out = 1 + L_out // stride
                L_in = L_out
            self._features_size_map[size] = L_out
        return self._features_size_map[size]

    def num_tokens(self, index):
        return self.size(index)

    def size(self, index):
        """Return an example's size as a float or tuple. This value is used when
        filtering a dataset with ``--max-positions``."""
        if self.pad:
            return self.sizes[index]
        return min(self.sizes[index], self.max_sample_size)

    def ordered_indices(self):
        """Return an ordered list of indices. Batches will be constructed based
        on this order."""

        if self.shuffle:
            order = [np.random.permutation(len(self))]
            order.append(
                np.minimum(
                    np.array(self.sizes),
                    self.max_sample_size,
                )
            )
            return np.lexsort(order)[::-1]
        else:
            return np.arange(len(self))

    def set_bucket_info(self, num_buckets):
        self.num_buckets = num_buckets
        if self.num_buckets > 0:
            self._collated_sizes = np.minimum(
                np.array(self.sizes),
                self.max_sample_size,
            )
            self.buckets = get_buckets(
                self._collated_sizes,
                self.num_buckets,
            )
            self._bucketed_sizes = get_bucketed_sizes(
                self._collated_sizes, self.buckets
            )
            logger.info(
                f"{len(self.buckets)} bucket(s) for the audio dataset: "
                f"{self.buckets}"
            )


class FileAudioDataset(RawAudioDataset):
    def __init__(
        self,
        manifest_path,
        sample_rate,
        max_sample_size=None,
        min_sample_size=0,
        shuffle=True,
        pad=False,
        normalize=False,
        num_buckets=0,
        compute_mask_indices=False,
        text_compression_level=TextCompressionLevel.none,
        **mask_compute_kwargs,
    ):
        super().__init__(
            sample_rate=sample_rate,
            max_sample_size=max_sample_size,
            min_sample_size=min_sample_size,
            shuffle=shuffle,
            pad=pad,
            normalize=normalize,
            compute_mask_indices=compute_mask_indices,
            **mask_compute_kwargs,
        )

        self.text_compressor = TextCompressor(level=text_compression_level)

        skipped = 0
        self.fnames = []
        sizes = []
        self.skipped_indices = set()

        with open(manifest_path, "r") as f:
            self.root_dir = f.readline().strip()
            for i, line in enumerate(f):
                items = line.strip().split("\t")
                assert len(items) == 2, line
                sz = int(items[1])
                if min_sample_size is not None and sz < min_sample_size:
                    skipped += 1
                    self.skipped_indices.add(i)
                    continue
                self.fnames.append(self.text_compressor.compress(items[0]))
                sizes.append(sz)
        logger.info(f"loaded {len(self.fnames)}, skipped {skipped} samples")

        self.sizes = np.array(sizes, dtype=np.int64)

        try:
            import pyarrow

            self.fnames = pyarrow.array(self.fnames)
        except:
            logger.debug(
                "Could not create a pyarrow array. Please install pyarrow for better performance"
            )
            pass

        self.set_bucket_info(num_buckets)

    def __getitem__(self, index):
        import soundfile as sf

        fn = self.fnames[index]
        fn = fn if isinstance(self.fnames, list) else fn.as_py()
        fn = self.text_compressor.decompress(fn)
        path_or_fp = os.path.join(self.root_dir, fn)
        _path, slice_ptr = parse_path(path_or_fp)
        if len(slice_ptr) == 2:
            byte_data = read_from_stored_zip(_path, slice_ptr[0], slice_ptr[1])
            assert is_sf_audio_data(byte_data)
            path_or_fp = io.BytesIO(byte_data)

        wav, curr_sample_rate = sf.read(path_or_fp, dtype="float32")

        feats = torch.from_numpy(wav).float()
        feats = self.postprocess(feats, curr_sample_rate)
        return {"id": index, "source": feats}


class BinarizedAudioDataset(RawAudioDataset):
    def __init__(
        self,
        data_dir,
        split,
        sample_rate,
        max_sample_size=None,
        min_sample_size=0,
        shuffle=True,
        pad=False,
        normalize=False,
        num_buckets=0,
        compute_mask_indices=False,
        **mask_compute_kwargs,
    ):
        super().__init__(
            sample_rate=sample_rate,
            max_sample_size=max_sample_size,
            min_sample_size=min_sample_size,
            shuffle=shuffle,
            pad=pad,
            normalize=normalize,
            compute_mask_indices=compute_mask_indices,
            **mask_compute_kwargs,
        )

        from fairseq.data import data_utils, Dictionary

        self.fnames_dict = Dictionary.load(os.path.join(data_dir, "dict.txt"))

        root_path = os.path.join(data_dir, f"{split}.root")
        if os.path.exists(root_path):
            with open(root_path, "r") as f:
                self.root_dir = next(f).strip()
        else:
            self.root_dir = None

        fnames_path = os.path.join(data_dir, split)
        self.fnames = data_utils.load_indexed_dataset(fnames_path, self.fnames_dict)
        lengths_path = os.path.join(data_dir, f"{split}.lengths")

        with open(lengths_path, "r") as f:
            for line in f:
                sz = int(line.rstrip())
                assert (
                    sz >= min_sample_size
                ), f"Min sample size is not supported for binarized dataset, but found a sample with size {sz}"
                self.sizes.append(sz)

        self.sizes = np.array(self.sizes, dtype=np.int64)

        self.set_bucket_info(num_buckets)
        logger.info(f"loaded {len(self.fnames)} samples")

    def __getitem__(self, index):
        import soundfile as sf

        fname = self.fnames_dict.string(self.fnames[index], separator="")
        if self.root_dir:
            fname = os.path.join(self.root_dir, fname)

        wav, curr_sample_rate = sf.read(fname)
        feats = torch.from_numpy(wav).float()
        feats = self.postprocess(feats, curr_sample_rate)
        return {"id": index, "source": feats}