File size: 18,486 Bytes
6a62ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import json
import logging
import os
import random
from pathlib import Path
import numpy as np
import torch
import torch.utils.data
from . import data_utils
from fairseq.data.fairseq_dataset import FairseqDataset
F0_FRAME_SPACE = 0.005 # sec
logger = logging.getLogger(__name__)
class ExpressiveCodeDataConfig(object):
def __init__(self, json_path):
with open(json_path, "r") as f:
self.config = json.load(f)
self._manifests = self.config["manifests"]
@property
def manifests(self):
return self._manifests
@property
def n_units(self):
return self.config["n_units"]
@property
def sampling_rate(self):
return self.config["sampling_rate"]
@property
def code_hop_size(self):
return self.config["code_hop_size"]
@property
def f0_stats(self):
"""pre-computed f0 statistics path"""
return self.config.get("f0_stats", None)
@property
def f0_vq_type(self):
"""naive or precomp"""
return self.config["f0_vq_type"]
@property
def f0_vq_name(self):
return self.config["f0_vq_name"]
def get_f0_vq_naive_quantizer(self, log, norm_mean, norm_std):
key = "log" if log else "linear"
if norm_mean and norm_std:
key += "_mean_std_norm"
elif norm_mean:
key += "_mean_norm"
else:
key += "_none_norm"
return self.config["f0_vq_naive_quantizer"][key]
@property
def f0_vq_n_units(self):
return self.config["f0_vq_n_units"]
@property
def multispkr(self):
"""how to parse speaker label from audio path"""
return self.config.get("multispkr", None)
def get_f0(audio, rate=16000):
try:
import amfm_decompy.basic_tools as basic
import amfm_decompy.pYAAPT as pYAAPT
from librosa.util import normalize
except ImportError:
raise "Please install amfm_decompy (`pip install AMFM-decompy`) and librosa (`pip install librosa`)."
assert audio.ndim == 1
frame_length = 20.0 # ms
to_pad = int(frame_length / 1000 * rate) // 2
audio = normalize(audio) * 0.95
audio = np.pad(audio, (to_pad, to_pad), "constant", constant_values=0)
audio = basic.SignalObj(audio, rate)
pitch = pYAAPT.yaapt(
audio,
frame_length=frame_length,
frame_space=F0_FRAME_SPACE * 1000,
nccf_thresh1=0.25,
tda_frame_length=25.0,
)
f0 = pitch.samp_values
return f0
def interpolate_f0(f0):
try:
from scipy.interpolate import interp1d
except ImportError:
raise "Please install scipy (`pip install scipy`)"
orig_t = np.arange(f0.shape[0])
f0_interp = f0[:]
ii = f0_interp != 0
if ii.sum() > 1:
f0_interp = interp1d(
orig_t[ii], f0_interp[ii], bounds_error=False, kind="linear", fill_value=0
)(orig_t)
f0_interp = torch.Tensor(f0_interp).type_as(f0).to(f0.device)
return f0_interp
def naive_quantize(x, edges):
bin_idx = (x.view(-1, 1) > edges.view(1, -1)).long().sum(dim=1)
return bin_idx
def load_wav(full_path):
try:
import soundfile as sf
except ImportError:
raise "Please install soundfile (`pip install SoundFile`)"
data, sampling_rate = sf.read(full_path)
return data, sampling_rate
def parse_code(code_str, dictionary, append_eos):
code, duration = torch.unique_consecutive(
torch.ShortTensor(list(map(int, code_str.split()))), return_counts=True
)
code = " ".join(map(str, code.tolist()))
code = dictionary.encode_line(code, append_eos).short()
if append_eos:
duration = torch.cat((duration, duration.new_zeros((1,))), dim=0) # eos
duration = duration.short()
return code, duration
def parse_manifest(manifest, dictionary):
audio_files = []
codes = []
durations = []
speakers = []
with open(manifest) as info:
for line in info.readlines():
sample = eval(line.strip())
if "cpc_km100" in sample:
k = "cpc_km100"
elif "hubert_km100" in sample:
k = "hubert_km100"
elif "phone" in sample:
k = "phone"
else:
assert False, "unknown format"
code = sample[k]
code, duration = parse_code(code, dictionary, append_eos=True)
codes.append(code)
durations.append(duration)
audio_files.append(sample["audio"])
speakers.append(sample.get("speaker", None))
return audio_files, codes, durations, speakers
def parse_speaker(path, method):
if type(path) == str:
path = Path(path)
if method == "parent_name":
return path.parent.name
elif method == "parent_parent_name":
return path.parent.parent.name
elif method == "_":
return path.name.split("_")[0]
elif method == "single":
return "A"
elif callable(method):
return method(path)
else:
raise NotImplementedError()
def get_f0_by_filename(filename, tgt_sampling_rate):
audio, sampling_rate = load_wav(filename)
if sampling_rate != tgt_sampling_rate:
raise ValueError(
"{} SR doesn't match target {} SR".format(sampling_rate, tgt_sampling_rate)
)
# compute un-interpolated f0, and use Ann's interp in __getitem__ if set
f0 = get_f0(audio, rate=tgt_sampling_rate)
f0 = torch.from_numpy(f0.astype(np.float32))
return f0
def align_f0_to_durations(f0, durations, f0_code_ratio, tol=1):
code_len = durations.sum()
targ_len = int(f0_code_ratio * code_len)
diff = f0.size(0) - targ_len
assert abs(diff) <= tol, (
f"Cannot subsample F0: |{f0.size(0)} - {f0_code_ratio}*{code_len}|"
f" > {tol} (dur=\n{durations})"
)
if diff > 0:
f0 = f0[:targ_len]
elif diff < 0:
f0 = torch.cat((f0, f0.new_full((-diff,), f0[-1])), 0)
f0_offset = 0.0
seg_f0s = []
for dur in durations:
f0_dur = dur.item() * f0_code_ratio
seg_f0 = f0[int(f0_offset) : int(f0_offset + f0_dur)]
seg_f0 = seg_f0[seg_f0 != 0]
if len(seg_f0) == 0:
seg_f0 = torch.tensor(0).type(seg_f0.type())
else:
seg_f0 = seg_f0.mean()
seg_f0s.append(seg_f0)
f0_offset += f0_dur
assert int(f0_offset) == f0.size(0), f"{f0_offset} {f0.size()} {durations.sum()}"
return torch.tensor(seg_f0s)
class Paddings(object):
def __init__(self, code_val, dur_val=0, f0_val=-2.0):
self.code = code_val
self.dur = dur_val
self.f0 = f0_val
class Shifts(object):
def __init__(self, shifts_str, pads):
self._shifts = list(map(int, shifts_str.split(",")))
assert len(self._shifts) == 2, self._shifts
assert all(s >= 0 for s in self._shifts)
self.extra_length = max(s for s in self._shifts)
self.pads = pads
@property
def dur(self):
return self._shifts[0]
@property
def f0(self):
return self._shifts[1]
@staticmethod
def shift_one(seq, left_pad_num, right_pad_num, pad):
assert seq.ndim == 1
bos = seq.new_full((left_pad_num,), pad)
eos = seq.new_full((right_pad_num,), pad)
seq = torch.cat([bos, seq, eos])
mask = torch.ones_like(seq).bool()
mask[left_pad_num : len(seq) - right_pad_num] = 0
return seq, mask
def __call__(self, code, dur, f0):
if self.extra_length == 0:
code_mask = torch.zeros_like(code).bool()
dur_mask = torch.zeros_like(dur).bool()
f0_mask = torch.zeros_like(f0).bool()
return code, code_mask, dur, dur_mask, f0, f0_mask
code, code_mask = self.shift_one(code, 0, self.extra_length, self.pads.code)
dur, dur_mask = self.shift_one(
dur, self.dur, self.extra_length - self.dur, self.pads.dur
)
f0, f0_mask = self.shift_one(
f0, self.f0, self.extra_length - self.f0, self.pads.f0
)
return code, code_mask, dur, dur_mask, f0, f0_mask
class CodeDataset(FairseqDataset):
def __init__(
self,
manifest,
dictionary,
dur_dictionary,
f0_dictionary,
config,
discrete_dur,
discrete_f0,
log_f0,
normalize_f0_mean,
normalize_f0_std,
interpolate_f0,
return_filename=False,
strip_filename=True,
shifts="0,0",
return_continuous_f0=False,
):
random.seed(1234)
self.dictionary = dictionary
self.dur_dictionary = dur_dictionary
self.f0_dictionary = f0_dictionary
self.config = config
# duration config
self.discrete_dur = discrete_dur
# pitch config
self.discrete_f0 = discrete_f0
self.log_f0 = log_f0
self.normalize_f0_mean = normalize_f0_mean
self.normalize_f0_std = normalize_f0_std
self.interpolate_f0 = interpolate_f0
self.return_filename = return_filename
self.strip_filename = strip_filename
self.f0_code_ratio = config.code_hop_size / (
config.sampling_rate * F0_FRAME_SPACE
)
# use lazy loading to avoid sharing file handlers across workers
self.manifest = manifest
self._codes = None
self._durs = None
self._f0s = None
with open(f"{manifest}.leng.txt", "r") as f:
lengs = [int(line.rstrip()) for line in f]
edges = np.cumsum([0] + lengs)
self.starts, self.ends = edges[:-1], edges[1:]
with open(f"{manifest}.path.txt", "r") as f:
self.file_names = [line.rstrip() for line in f]
logger.info(f"num entries: {len(self.starts)}")
if os.path.exists(f"{manifest}.f0_stat.pt"):
self.f0_stats = torch.load(f"{manifest}.f0_stat.pt")
elif config.f0_stats:
self.f0_stats = torch.load(config.f0_stats)
self.multispkr = config.multispkr
if config.multispkr:
with open(f"{manifest}.speaker.txt", "r") as f:
self.spkrs = [line.rstrip() for line in f]
self.id_to_spkr = sorted(self.spkrs)
self.spkr_to_id = {k: v for v, k in enumerate(self.id_to_spkr)}
self.pads = Paddings(
dictionary.pad(),
0, # use 0 for duration padding
f0_dictionary.pad() if discrete_f0 else -5.0,
)
self.shifts = Shifts(shifts, pads=self.pads)
self.return_continuous_f0 = return_continuous_f0
def get_data_handlers(self):
logging.info(f"loading data for {self.manifest}")
self._codes = np.load(f"{self.manifest}.code.npy", mmap_mode="r")
self._durs = np.load(f"{self.manifest}.dur.npy", mmap_mode="r")
if self.discrete_f0:
if self.config.f0_vq_type == "precomp":
self._f0s = np.load(
f"{self.manifest}.{self.config.f0_vq_name}.npy", mmap_mode="r"
)
elif self.config.f0_vq_type == "naive":
self._f0s = np.load(f"{self.manifest}.f0.npy", mmap_mode="r")
quantizers_path = self.config.get_f0_vq_naive_quantizer(
self.log_f0, self.normalize_f0_mean, self.normalize_f0_std
)
quantizers = torch.load(quantizers_path)
n_units = self.config.f0_vq_n_units
self._f0_quantizer = torch.from_numpy(quantizers[n_units])
else:
raise ValueError(f"f0_vq_type {self.config.f0_vq_type} not supported")
else:
self._f0s = np.load(f"{self.manifest}.f0.npy", mmap_mode="r")
def preprocess_f0(self, f0, stats):
"""
1. interpolate
2. log transform (keep unvoiced frame 0)
"""
# TODO: change this to be dependent on config for naive quantizer
f0 = f0.clone()
if self.interpolate_f0:
f0 = interpolate_f0(f0)
mask = f0 != 0 # only process voiced frames
if self.log_f0:
f0[mask] = f0[mask].log()
if self.normalize_f0_mean:
mean = stats["logf0_mean"] if self.log_f0 else stats["f0_mean"]
f0[mask] = f0[mask] - mean
if self.normalize_f0_std:
std = stats["logf0_std"] if self.log_f0 else stats["f0_std"]
f0[mask] = f0[mask] / std
return f0
def _get_raw_item(self, index):
start, end = self.starts[index], self.ends[index]
if self._codes is None:
self.get_data_handlers()
code = torch.from_numpy(np.array(self._codes[start:end])).long()
dur = torch.from_numpy(np.array(self._durs[start:end]))
f0 = torch.from_numpy(np.array(self._f0s[start:end]))
return code, dur, f0
def __getitem__(self, index):
code, dur, f0 = self._get_raw_item(index)
code = torch.cat([code.new([self.dictionary.bos()]), code])
# use 0 for eos and bos
dur = torch.cat([dur.new([0]), dur])
if self.discrete_dur:
dur = self.dur_dictionary.encode_line(
" ".join(map(str, dur.tolist())), append_eos=False
).long()
else:
dur = dur.float()
# TODO: find a more elegant approach
raw_f0 = None
if self.discrete_f0:
if self.config.f0_vq_type == "precomp":
f0 = self.f0_dictionary.encode_line(
" ".join(map(str, f0.tolist())), append_eos=False
).long()
else:
f0 = f0.float()
f0 = self.preprocess_f0(f0, self.f0_stats[self.spkrs[index]])
if self.return_continuous_f0:
raw_f0 = f0
raw_f0 = torch.cat([raw_f0.new([self.f0_dictionary.bos()]), raw_f0])
f0 = naive_quantize(f0, self._f0_quantizer)
f0 = torch.cat([f0.new([self.f0_dictionary.bos()]), f0])
else:
f0 = f0.float()
if self.multispkr:
f0 = self.preprocess_f0(f0, self.f0_stats[self.spkrs[index]])
else:
f0 = self.preprocess_f0(f0, self.f0_stats)
f0 = torch.cat([f0.new([0]), f0])
if raw_f0 is not None:
*_, raw_f0, raw_f0_mask = self.shifts(code, dur, raw_f0)
else:
raw_f0_mask = None
code, code_mask, dur, dur_mask, f0, f0_mask = self.shifts(code, dur, f0)
if raw_f0_mask is not None:
assert (raw_f0_mask == f0_mask).all()
# is a padded frame if either input or output is padded
feats = {
"source": code[:-1],
"target": code[1:],
"mask": code_mask[1:].logical_or(code_mask[:-1]),
"dur_source": dur[:-1],
"dur_target": dur[1:],
"dur_mask": dur_mask[1:].logical_or(dur_mask[:-1]),
"f0_source": f0[:-1],
"f0_target": f0[1:],
"f0_mask": f0_mask[1:].logical_or(f0_mask[:-1]),
}
if raw_f0 is not None:
feats["raw_f0"] = raw_f0[1:]
if self.return_filename:
fname = self.file_names[index]
feats["filename"] = (
fname if not self.strip_filename else Path(fname).with_suffix("").name
)
return feats
def __len__(self):
return len(self.starts)
def size(self, index):
return self.ends[index] - self.starts[index] + self.shifts.extra_length
def num_tokens(self, index):
return self.size(index)
def collater(self, samples):
pad_idx, eos_idx = self.dictionary.pad(), self.dictionary.eos()
if len(samples) == 0:
return {}
src_tokens = data_utils.collate_tokens(
[s["source"] for s in samples], pad_idx, eos_idx, left_pad=False
)
tgt_tokens = data_utils.collate_tokens(
[s["target"] for s in samples],
pad_idx=pad_idx,
eos_idx=pad_idx, # appending padding, eos is there already
left_pad=False,
)
src_durs, tgt_durs = [
data_utils.collate_tokens(
[s[k] for s in samples],
pad_idx=self.pads.dur,
eos_idx=self.pads.dur,
left_pad=False,
)
for k in ["dur_source", "dur_target"]
]
src_f0s, tgt_f0s = [
data_utils.collate_tokens(
[s[k] for s in samples],
pad_idx=self.pads.f0,
eos_idx=self.pads.f0,
left_pad=False,
)
for k in ["f0_source", "f0_target"]
]
mask, dur_mask, f0_mask = [
data_utils.collate_tokens(
[s[k] for s in samples],
pad_idx=1,
eos_idx=1,
left_pad=False,
)
for k in ["mask", "dur_mask", "f0_mask"]
]
src_lengths = torch.LongTensor([s["source"].numel() for s in samples])
n_tokens = sum(len(s["source"]) for s in samples)
result = {
"nsentences": len(samples),
"ntokens": n_tokens,
"net_input": {
"src_tokens": src_tokens,
"src_lengths": src_lengths,
"dur_src": src_durs,
"f0_src": src_f0s,
},
"target": tgt_tokens,
"dur_target": tgt_durs,
"f0_target": tgt_f0s,
"mask": mask,
"dur_mask": dur_mask,
"f0_mask": f0_mask,
}
if "filename" in samples[0]:
result["filename"] = [s["filename"] for s in samples]
# TODO: remove this hack into the inference dataset
if "prefix" in samples[0]:
result["prefix"] = [s["prefix"] for s in samples]
if "raw_f0" in samples[0]:
raw_f0s = data_utils.collate_tokens(
[s["raw_f0"] for s in samples],
pad_idx=self.pads.f0,
eos_idx=self.pads.f0,
left_pad=False,
)
result["raw_f0"] = raw_f0s
return result
|