File size: 12,903 Bytes
6a62ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import os
from collections import Counter
from multiprocessing import Pool

import torch
from fairseq import utils
from fairseq.data import data_utils
from fairseq.file_chunker_utils import Chunker, find_offsets
from fairseq.file_io import PathManager
from fairseq.tokenizer import tokenize_line


class Dictionary:
    """A mapping from symbols to consecutive integers"""

    def __init__(
        self,
        *,  # begin keyword-only arguments
        bos="<s>",
        pad="<pad>",
        eos="</s>",
        unk="<unk>",
        extra_special_symbols=None,
    ):
        self.bos_word, self.unk_word, self.pad_word, self.eos_word = bos, unk, pad, eos
        self.symbols = []
        self.count = []
        self.indices = {}
        self.bos_index = self.add_symbol(bos)
        self.pad_index = self.add_symbol(pad)
        self.eos_index = self.add_symbol(eos)
        self.unk_index = self.add_symbol(unk)
        if extra_special_symbols:
            for s in extra_special_symbols:
                self.add_symbol(s)
        self.nspecial = len(self.symbols)

    def __eq__(self, other):
        return self.indices == other.indices

    def __getitem__(self, idx):
        if idx < len(self.symbols):
            return self.symbols[idx]
        return self.unk_word

    def get_count(self, idx):
        return self.count[idx]

    def __len__(self):
        """Returns the number of symbols in the dictionary"""
        return len(self.symbols)

    def __contains__(self, sym):
        return sym in self.indices

    def index(self, sym):
        """Returns the index of the specified symbol"""
        assert isinstance(sym, str)
        if sym in self.indices:
            return self.indices[sym]
        return self.unk_index

    def string(
        self,
        tensor,
        bpe_symbol=None,
        escape_unk=False,
        extra_symbols_to_ignore=None,
        unk_string=None,
        include_eos=False,
        separator=" ",
    ):
        """Helper for converting a tensor of token indices to a string.

        Can optionally remove BPE symbols or escape <unk> words.
        """
        if torch.is_tensor(tensor) and tensor.dim() == 2:
            return "\n".join(
                self.string(
                    t,
                    bpe_symbol,
                    escape_unk,
                    extra_symbols_to_ignore,
                    include_eos=include_eos,
                )
                for t in tensor
            )

        extra_symbols_to_ignore = set(extra_symbols_to_ignore or [])
        if not include_eos:
            extra_symbols_to_ignore.add(self.eos())

        def token_string(i):
            if i == self.unk():
                if unk_string is not None:
                    return unk_string
                else:
                    return self.unk_string(escape_unk)
            else:
                return self[i]

        if hasattr(self, "bos_index"):
            extra_symbols_to_ignore.add(self.bos())

        sent = separator.join(
            token_string(i)
            for i in tensor
            if utils.item(i) not in extra_symbols_to_ignore
        )

        return data_utils.post_process(sent, bpe_symbol)

    def unk_string(self, escape=False):
        """Return unknown string, optionally escaped as: <<unk>>"""
        if escape:
            return "<{}>".format(self.unk_word)
        else:
            return self.unk_word

    def add_symbol(self, word, n=1, overwrite=False):
        """Adds a word to the dictionary"""
        if word in self.indices and not overwrite:
            idx = self.indices[word]
            self.count[idx] = self.count[idx] + n
            return idx
        else:
            idx = len(self.symbols)
            self.indices[word] = idx
            self.symbols.append(word)
            self.count.append(n)
            return idx

    def update(self, new_dict):
        """Updates counts from new dictionary."""
        for word in new_dict.symbols:
            idx2 = new_dict.indices[word]
            if word in self.indices:
                idx = self.indices[word]
                self.count[idx] = self.count[idx] + new_dict.count[idx2]
            else:
                idx = len(self.symbols)
                self.indices[word] = idx
                self.symbols.append(word)
                self.count.append(new_dict.count[idx2])

    def finalize(self, threshold=-1, nwords=-1, padding_factor=8):
        """Sort symbols by frequency in descending order, ignoring special ones.

        Args:
            - threshold defines the minimum word count
            - nwords defines the total number of words in the final dictionary,
                including special symbols
            - padding_factor can be used to pad the dictionary size to be a
                multiple of 8, which is important on some hardware (e.g., Nvidia
                Tensor Cores).
        """
        if nwords <= 0:
            nwords = len(self)

        new_indices = dict(zip(self.symbols[: self.nspecial], range(self.nspecial)))
        new_symbols = self.symbols[: self.nspecial]
        new_count = self.count[: self.nspecial]

        c = Counter(
            dict(
                sorted(zip(self.symbols[self.nspecial :], self.count[self.nspecial :]))
            )
        )
        for symbol, count in c.most_common(nwords - self.nspecial):
            if count >= threshold:
                new_indices[symbol] = len(new_symbols)
                new_symbols.append(symbol)
                new_count.append(count)
            else:
                break

        assert len(new_symbols) == len(new_indices)

        self.count = list(new_count)
        self.symbols = list(new_symbols)
        self.indices = new_indices

        self.pad_to_multiple_(padding_factor)

    def pad_to_multiple_(self, padding_factor):
        """Pad Dictionary size to be a multiple of *padding_factor*."""
        if padding_factor > 1:
            i = 0
            while len(self) % padding_factor != 0:
                symbol = "madeupword{:04d}".format(i)
                self.add_symbol(symbol, n=0)
                i += 1

    def bos(self):
        """Helper to get index of beginning-of-sentence symbol"""
        return self.bos_index

    def pad(self):
        """Helper to get index of pad symbol"""
        return self.pad_index

    def eos(self):
        """Helper to get index of end-of-sentence symbol"""
        return self.eos_index

    def unk(self):
        """Helper to get index of unk symbol"""
        return self.unk_index

    @classmethod
    def load(cls, f):
        """Loads the dictionary from a text file with the format:

        ```
        <symbol0> <count0>
        <symbol1> <count1>
        ...
        ```
        """
        d = cls()
        d.add_from_file(f)
        return d

    def add_from_file(self, f):
        """
        Loads a pre-existing dictionary from a text file and adds its symbols
        to this instance.
        """
        if isinstance(f, str):
            try:
                with open(PathManager.get_local_path(f), "r", encoding="utf-8") as fd:
                    self.add_from_file(fd)
            except FileNotFoundError as fnfe:
                raise fnfe
            except UnicodeError:
                raise Exception(
                    "Incorrect encoding detected in {}, please "
                    "rebuild the dataset".format(f)
                )
            return

        lines = f.readlines()
        indices_start_line = self._load_meta(lines)

        for line in lines[indices_start_line:]:
            try:
                line, field = line.rstrip().rsplit(" ", 1)
                if field == "#fairseq:overwrite":
                    overwrite = True
                    line, field = line.rsplit(" ", 1)
                else:
                    overwrite = False
                count = int(field)
                word = line
                if word in self and not overwrite:
                    raise RuntimeError(
                        "Duplicate word found when loading Dictionary: '{}'. "
                        "Duplicate words can overwrite earlier ones by adding the "
                        "#fairseq:overwrite flag at the end of the corresponding row "
                        "in the dictionary file. If using the Camembert model, please "
                        "download an updated copy of the model file.".format(word)
                    )
                self.add_symbol(word, n=count, overwrite=overwrite)
            except ValueError:
                raise ValueError(
                    f"Incorrect dictionary format, expected '<token> <cnt> [flags]': \"{line}\""
                )

    def _save(self, f, kv_iterator):
        if isinstance(f, str):
            PathManager.mkdirs(os.path.dirname(f))
            with PathManager.open(f, "w", encoding="utf-8") as fd:
                return self.save(fd)
        for k, v in kv_iterator:
            print("{} {}".format(k, v), file=f)

    def _get_meta(self):
        return [], []

    def _load_meta(self, lines):
        return 0

    def save(self, f):
        """Stores dictionary into a text file"""
        ex_keys, ex_vals = self._get_meta()
        self._save(
            f,
            zip(
                ex_keys + self.symbols[self.nspecial :],
                ex_vals + self.count[self.nspecial :],
            ),
        )

    def dummy_sentence(self, length):
        t = torch.Tensor(length).uniform_(self.nspecial + 1, len(self)).long()
        t[-1] = self.eos()
        return t

    def encode_line(
        self,
        line,
        line_tokenizer=tokenize_line,
        add_if_not_exist=True,
        consumer=None,
        append_eos=True,
        reverse_order=False,
    ) -> torch.IntTensor:
        words = line_tokenizer(line)
        if reverse_order:
            words = list(reversed(words))
        nwords = len(words)
        ids = torch.IntTensor(nwords + 1 if append_eos else nwords)

        for i, word in enumerate(words):
            if add_if_not_exist:
                idx = self.add_symbol(word)
            else:
                idx = self.index(word)
            if consumer is not None:
                consumer(word, idx)
            ids[i] = idx
        if append_eos:
            ids[nwords] = self.eos_index
        return ids

    @staticmethod
    def _add_file_to_dictionary_single_worker(
        filename,
        tokenize,
        eos_word,
        start_offset,
        end_offset,
    ):
        counter = Counter()
        with Chunker(filename, start_offset, end_offset) as line_iterator:
            for line in line_iterator:
                for word in tokenize(line):
                    counter.update([word])
                counter.update([eos_word])
        return counter

    @staticmethod
    def add_file_to_dictionary(filename, dict, tokenize, num_workers):
        def merge_result(counter):
            for w, c in sorted(counter.items()):
                dict.add_symbol(w, c)

        local_file = PathManager.get_local_path(filename)
        offsets = find_offsets(local_file, num_workers)
        if num_workers > 1:
            chunks = zip(offsets, offsets[1:])
            pool = Pool(processes=num_workers)
            results = []
            for (start_offset, end_offset) in chunks:
                results.append(
                    pool.apply_async(
                        Dictionary._add_file_to_dictionary_single_worker,
                        (
                            local_file,
                            tokenize,
                            dict.eos_word,
                            start_offset,
                            end_offset,
                        ),
                    )
                )
            pool.close()
            pool.join()
            for r in results:
                merge_result(r.get())
        else:
            merge_result(
                Dictionary._add_file_to_dictionary_single_worker(
                    local_file, tokenize, dict.eos_word, offsets[0], offsets[1]
                )
            )


class TruncatedDictionary(object):
    def __init__(self, wrapped_dict, length):
        self.__class__ = type(
            wrapped_dict.__class__.__name__,
            (self.__class__, wrapped_dict.__class__),
            {},
        )
        self.__dict__ = wrapped_dict.__dict__
        self.wrapped_dict = wrapped_dict
        self.length = min(len(self.wrapped_dict), length)

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        if i < self.length:
            return self.wrapped_dict[i]
        return self.wrapped_dict.unk()