File size: 13,238 Bytes
6a62ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from collections import namedtuple

import numpy as np
import torch
from fairseq import utils


DecoderOut = namedtuple(
    "IterativeRefinementDecoderOut",
    ["output_tokens", "output_scores", "attn", "step", "max_step", "history"],
)


class IterativeRefinementGenerator(object):
    def __init__(
        self,
        tgt_dict,
        models=None,
        eos_penalty=0.0,
        max_iter=10,
        max_ratio=2,
        beam_size=1,
        decoding_format=None,
        retain_dropout=False,
        adaptive=True,
        retain_history=False,
        reranking=False,
    ):
        """
        Generates translations based on iterative refinement.

        Args:
            tgt_dict: target dictionary
            eos_penalty: if > 0.0, it penalized early-stopping in decoding
            max_iter: maximum number of refinement iterations
            max_ratio: generate sequences of maximum length ax, where x is the source length
            decoding_format: decoding mode in {'unigram', 'ensemble', 'vote', 'dp', 'bs'}
            retain_dropout: retaining dropout in the inference
            adaptive: decoding with early stop
        """
        self.bos = tgt_dict.bos()
        self.pad = tgt_dict.pad()
        self.unk = tgt_dict.unk()
        self.eos = tgt_dict.eos()
        self.vocab_size = len(tgt_dict)
        self.eos_penalty = eos_penalty
        self.max_iter = max_iter
        self.max_ratio = max_ratio
        self.beam_size = beam_size
        self.reranking = reranking
        self.decoding_format = decoding_format
        self.retain_dropout = retain_dropout
        self.retain_history = retain_history
        self.adaptive = adaptive
        self.models = models

    def generate_batched_itr(
        self,
        data_itr,
        maxlen_a=None,
        maxlen_b=None,
        cuda=False,
        timer=None,
        prefix_size=0,
    ):
        """Iterate over a batched dataset and yield individual translations.

        Args:
            maxlen_a/b: generate sequences of maximum length ax + b,
                where x is the source sentence length.
            cuda: use GPU for generation
            timer: StopwatchMeter for timing generations.
        """

        for sample in data_itr:
            if "net_input" not in sample:
                continue
            if timer is not None:
                timer.start()
            with torch.no_grad():
                hypos = self.generate(
                    self.models,
                    sample,
                    prefix_tokens=sample["target"][:, :prefix_size]
                    if prefix_size > 0
                    else None,
                )
            if timer is not None:
                timer.stop(sample["ntokens"])
            for i, id in enumerate(sample["id"]):
                # remove padding
                src = utils.strip_pad(sample["net_input"]["src_tokens"][i, :], self.pad)
                ref = utils.strip_pad(sample["target"][i, :], self.pad)
                yield id, src, ref, hypos[i]

    @torch.no_grad()
    def generate(self, models, sample, prefix_tokens=None, constraints=None):
        if constraints is not None:
            raise NotImplementedError(
                "Constrained decoding with the IterativeRefinementGenerator is not supported"
            )

        # TODO: iterative refinement generator does not support ensemble for now.
        if not self.retain_dropout:
            for model in models:
                model.eval()

        model, reranker = models[0], None
        if self.reranking:
            assert len(models) > 1, "Assuming the last checkpoint is the reranker"
            assert (
                self.beam_size > 1
            ), "Reranking requires multiple translation for each example"

            reranker = models[-1]
            models = models[:-1]

        if len(models) > 1 and hasattr(model, "enable_ensemble"):
            assert model.allow_ensemble, "{} does not support ensembling".format(
                model.__class__.__name__
            )
            model.enable_ensemble(models)

        # TODO: better encoder inputs?
        src_tokens = sample["net_input"]["src_tokens"]
        src_lengths = sample["net_input"]["src_lengths"]
        bsz, src_len = src_tokens.size()

        # initialize
        encoder_out = model.forward_encoder([src_tokens, src_lengths])
        prev_decoder_out = model.initialize_output_tokens(encoder_out, src_tokens)

        if self.beam_size > 1:
            assert (
                model.allow_length_beam
            ), "{} does not support decoding with length beam.".format(
                model.__class__.__name__
            )

            # regenerate data based on length-beam
            length_beam_order = (
                utils.new_arange(src_tokens, self.beam_size, bsz).t().reshape(-1)
            )
            encoder_out = model.encoder.reorder_encoder_out(
                encoder_out, length_beam_order
            )
            prev_decoder_out = model.regenerate_length_beam(
                prev_decoder_out, self.beam_size
            )
            bsz = bsz * self.beam_size

        sent_idxs = torch.arange(bsz)
        prev_output_tokens = prev_decoder_out.output_tokens.clone()

        if self.retain_history:
            prev_decoder_out = prev_decoder_out._replace(history=[prev_output_tokens])

        finalized = [[] for _ in range(bsz)]

        def is_a_loop(x, y, s, a):
            b, l_x, l_y = x.size(0), x.size(1), y.size(1)
            if l_x > l_y:
                y = torch.cat([y, x.new_zeros(b, l_x - l_y).fill_(self.pad)], 1)
                s = torch.cat([s, s.new_zeros(b, l_x - l_y)], 1)
                if a is not None:
                    a = torch.cat([a, a.new_zeros(b, l_x - l_y, a.size(2))], 1)
            elif l_x < l_y:
                x = torch.cat([x, y.new_zeros(b, l_y - l_x).fill_(self.pad)], 1)
            return (x == y).all(1), y, s, a

        def finalized_hypos(step, prev_out_token, prev_out_score, prev_out_attn):
            cutoff = prev_out_token.ne(self.pad)
            tokens = prev_out_token[cutoff]
            if prev_out_score is None:
                scores, score = None, None
            else:
                scores = prev_out_score[cutoff]
                score = scores.mean()

            if prev_out_attn is None:
                hypo_attn, alignment = None, None
            else:
                hypo_attn = prev_out_attn[cutoff]
                alignment = hypo_attn.max(dim=1)[1]
            return {
                "steps": step,
                "tokens": tokens,
                "positional_scores": scores,
                "score": score,
                "hypo_attn": hypo_attn,
                "alignment": alignment,
            }

        for step in range(self.max_iter + 1):

            decoder_options = {
                "eos_penalty": self.eos_penalty,
                "max_ratio": self.max_ratio,
                "decoding_format": self.decoding_format,
            }
            prev_decoder_out = prev_decoder_out._replace(
                step=step,
                max_step=self.max_iter + 1,
            )

            decoder_out = model.forward_decoder(
                prev_decoder_out, encoder_out, **decoder_options
            )

            if self.adaptive:
                # terminate if there is a loop
                terminated, out_tokens, out_scores, out_attn = is_a_loop(
                    prev_output_tokens,
                    decoder_out.output_tokens,
                    decoder_out.output_scores,
                    decoder_out.attn,
                )
                decoder_out = decoder_out._replace(
                    output_tokens=out_tokens,
                    output_scores=out_scores,
                    attn=out_attn,
                )

            else:
                terminated = decoder_out.output_tokens.new_zeros(
                    decoder_out.output_tokens.size(0)
                ).bool()

            if step == self.max_iter:  # reach last iteration, terminate
                terminated.fill_(1)

            # collect finalized sentences
            finalized_idxs = sent_idxs[terminated]
            finalized_tokens = decoder_out.output_tokens[terminated]
            finalized_scores = decoder_out.output_scores[terminated]
            finalized_attn = (
                None
                if (decoder_out.attn is None or decoder_out.attn.size(0) == 0)
                else decoder_out.attn[terminated]
            )

            if self.retain_history:
                finalized_history_tokens = [h[terminated] for h in decoder_out.history]

            for i in range(finalized_idxs.size(0)):
                finalized[finalized_idxs[i]] = [
                    finalized_hypos(
                        step,
                        finalized_tokens[i],
                        finalized_scores[i],
                        None if finalized_attn is None else finalized_attn[i],
                    )
                ]

                if self.retain_history:
                    finalized[finalized_idxs[i]][0]["history"] = []
                    for j in range(len(finalized_history_tokens)):
                        finalized[finalized_idxs[i]][0]["history"].append(
                            finalized_hypos(
                                step, finalized_history_tokens[j][i], None, None
                            )
                        )

            # check if all terminated
            if terminated.sum() == terminated.size(0):
                break

            # for next step
            not_terminated = ~terminated
            prev_decoder_out = decoder_out._replace(
                output_tokens=decoder_out.output_tokens[not_terminated],
                output_scores=decoder_out.output_scores[not_terminated],
                attn=decoder_out.attn[not_terminated]
                if (decoder_out.attn is not None and decoder_out.attn.size(0) > 0)
                else None,
                history=[h[not_terminated] for h in decoder_out.history]
                if decoder_out.history is not None
                else None,
            )
            encoder_out = model.encoder.reorder_encoder_out(
                encoder_out, not_terminated.nonzero(as_tuple=False).squeeze()
            )
            sent_idxs = sent_idxs[not_terminated]
            prev_output_tokens = prev_decoder_out.output_tokens.clone()

        if self.beam_size > 1:
            if reranker is not None:
                finalized = self.rerank(
                    reranker, finalized, [src_tokens, src_lengths], self.beam_size
                )

            # aggregate information from length beam
            finalized = [
                finalized[
                    np.argmax(
                        [
                            finalized[self.beam_size * i + j][0]["score"]
                            for j in range(self.beam_size)
                        ]
                    )
                    + self.beam_size * i
                ]
                for i in range(len(finalized) // self.beam_size)
            ]

        return finalized

    def rerank(self, reranker, finalized, encoder_input, beam_size):
        def rebuild_batch(finalized):
            finalized_tokens = [f[0]["tokens"] for f in finalized]
            finalized_maxlen = max(f.size(0) for f in finalized_tokens)
            final_output_tokens = (
                finalized_tokens[0]
                .new_zeros(len(finalized_tokens), finalized_maxlen)
                .fill_(self.pad)
            )
            for i, f in enumerate(finalized_tokens):
                final_output_tokens[i, : f.size(0)] = f
            return final_output_tokens

        final_output_tokens = rebuild_batch(finalized)
        final_output_tokens[
            :, 0
        ] = self.eos  # autoregressive model assumes starting with EOS

        reranker_encoder_out = reranker.encoder(*encoder_input)
        length_beam_order = (
            utils.new_arange(
                final_output_tokens, beam_size, reranker_encoder_out.encoder_out.size(1)
            )
            .t()
            .reshape(-1)
        )
        reranker_encoder_out = reranker.encoder.reorder_encoder_out(
            reranker_encoder_out, length_beam_order
        )
        reranking_scores = reranker.get_normalized_probs(
            reranker.decoder(final_output_tokens[:, :-1], reranker_encoder_out),
            True,
            None,
        )
        reranking_scores = reranking_scores.gather(2, final_output_tokens[:, 1:, None])
        reranking_masks = final_output_tokens[:, 1:].ne(self.pad)
        reranking_scores = (
            reranking_scores[:, :, 0].masked_fill_(~reranking_masks, 0).sum(1)
        )
        reranking_scores = reranking_scores / reranking_masks.sum(1).type_as(
            reranking_scores
        )

        for i in range(len(finalized)):
            finalized[i][0]["score"] = reranking_scores[i]

        return finalized