Spaces:
Runtime error
Runtime error
File size: 8,710 Bytes
6a62ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import bisect
import time
from collections import OrderedDict
from typing import Dict, Optional
try:
import torch
def type_as(a, b):
if torch.is_tensor(a) and torch.is_tensor(b):
return a.to(b)
else:
return a
except ImportError:
torch = None
def type_as(a, b):
return a
try:
import numpy as np
except ImportError:
np = None
class Meter(object):
"""Base class for Meters."""
def __init__(self):
pass
def state_dict(self):
return {}
def load_state_dict(self, state_dict):
pass
def reset(self):
raise NotImplementedError
@property
def smoothed_value(self) -> float:
"""Smoothed value used for logging."""
raise NotImplementedError
def safe_round(number, ndigits):
if hasattr(number, "__round__"):
return round(number, ndigits)
elif torch is not None and torch.is_tensor(number) and number.numel() == 1:
return safe_round(number.item(), ndigits)
elif np is not None and np.ndim(number) == 0 and hasattr(number, "item"):
return safe_round(number.item(), ndigits)
else:
return number
class AverageMeter(Meter):
"""Computes and stores the average and current value"""
def __init__(self, round: Optional[int] = None):
self.round = round
self.reset()
def reset(self):
self.val = None # most recent update
self.sum = 0 # sum from all updates
self.count = 0 # total n from all updates
def update(self, val, n=1):
if val is not None:
self.val = val
if n > 0:
self.sum = type_as(self.sum, val) + (val * n)
self.count = type_as(self.count, n) + n
def state_dict(self):
return {
"val": self.val,
"sum": self.sum,
"count": self.count,
"round": self.round,
}
def load_state_dict(self, state_dict):
self.val = state_dict["val"]
self.sum = state_dict["sum"]
self.count = state_dict["count"]
self.round = state_dict.get("round", None)
@property
def avg(self):
return self.sum / self.count if self.count > 0 else self.val
@property
def smoothed_value(self) -> float:
val = self.avg
if self.round is not None and val is not None:
val = safe_round(val, self.round)
return val
class SumMeter(Meter):
"""Computes and stores the sum"""
def __init__(self, round: Optional[int] = None):
self.round = round
self.reset()
def reset(self):
self.sum = 0 # sum from all updates
def update(self, val):
if val is not None:
self.sum = type_as(self.sum, val) + val
def state_dict(self):
return {
"sum": self.sum,
"round": self.round,
}
def load_state_dict(self, state_dict):
self.sum = state_dict["sum"]
self.round = state_dict.get("round", None)
@property
def smoothed_value(self) -> float:
val = self.sum
if self.round is not None and val is not None:
val = safe_round(val, self.round)
return val
class TimeMeter(Meter):
"""Computes the average occurrence of some event per second"""
def __init__(
self,
init: int = 0,
n: int = 0,
round: Optional[int] = None,
):
self.round = round
self.reset(init, n)
def reset(self, init=0, n=0):
self.init = init
self.start = time.perf_counter()
self.n = n
self.i = 0
def update(self, val=1):
self.n = type_as(self.n, val) + val
self.i += 1
def state_dict(self):
return {
"init": self.elapsed_time,
"n": self.n,
"round": self.round,
}
def load_state_dict(self, state_dict):
if "start" in state_dict:
# backwards compatibility for old state_dicts
self.reset(init=state_dict["init"])
else:
self.reset(init=state_dict["init"], n=state_dict["n"])
self.round = state_dict.get("round", None)
@property
def avg(self):
return self.n / self.elapsed_time
@property
def elapsed_time(self):
return self.init + (time.perf_counter() - self.start)
@property
def smoothed_value(self) -> float:
val = self.avg
if self.round is not None and val is not None:
val = safe_round(val, self.round)
return val
class StopwatchMeter(Meter):
"""Computes the sum/avg duration of some event in seconds"""
def __init__(self, round: Optional[int] = None):
self.round = round
self.sum = 0
self.n = 0
self.start_time = None
def start(self):
self.start_time = time.perf_counter()
def stop(self, n=1, prehook=None):
if self.start_time is not None:
if prehook is not None:
prehook()
delta = time.perf_counter() - self.start_time
self.sum = self.sum + delta
self.n = type_as(self.n, n) + n
def reset(self):
self.sum = 0 # cumulative time during which stopwatch was active
self.n = 0 # total n across all start/stop
self.start()
def state_dict(self):
return {
"sum": self.sum,
"n": self.n,
"round": self.round,
}
def load_state_dict(self, state_dict):
self.sum = state_dict["sum"]
self.n = state_dict["n"]
self.start_time = None
self.round = state_dict.get("round", None)
@property
def avg(self):
return self.sum / self.n if self.n > 0 else self.sum
@property
def elapsed_time(self):
if self.start_time is None:
return 0.0
return time.perf_counter() - self.start_time
@property
def smoothed_value(self) -> float:
val = self.avg if self.sum > 0 else self.elapsed_time
if self.round is not None and val is not None:
val = safe_round(val, self.round)
return val
class MetersDict(OrderedDict):
"""A sorted dictionary of :class:`Meters`.
Meters are sorted according to a priority that is given when the
meter is first added to the dictionary.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.priorities = []
def __setitem__(self, key, value):
assert key not in self, "MetersDict doesn't support reassignment"
priority, value = value
bisect.insort(self.priorities, (priority, len(self.priorities), key))
super().__setitem__(key, value)
for _, _, key in self.priorities: # reorder dict to match priorities
self.move_to_end(key)
def add_meter(self, key, meter, priority):
self.__setitem__(key, (priority, meter))
def state_dict(self):
return [
(pri, key, self[key].__class__.__name__, self[key].state_dict())
for pri, _, key in self.priorities
# can't serialize DerivedMeter instances
if not isinstance(self[key], MetersDict._DerivedMeter)
]
def load_state_dict(self, state_dict):
self.clear()
self.priorities.clear()
for pri, key, meter_cls, meter_state in state_dict:
meter = globals()[meter_cls]()
meter.load_state_dict(meter_state)
self.add_meter(key, meter, pri)
def get_smoothed_value(self, key: str) -> float:
"""Get a single smoothed value."""
meter = self[key]
if isinstance(meter, MetersDict._DerivedMeter):
return meter.fn(self)
else:
return meter.smoothed_value
def get_smoothed_values(self) -> Dict[str, float]:
"""Get all smoothed values."""
return OrderedDict(
[
(key, self.get_smoothed_value(key))
for key in self.keys()
if not key.startswith("_")
]
)
def reset(self):
"""Reset Meter instances."""
for meter in self.values():
if isinstance(meter, MetersDict._DerivedMeter):
continue
meter.reset()
class _DerivedMeter(Meter):
"""A Meter whose values are derived from other Meters."""
def __init__(self, fn):
self.fn = fn
def reset(self):
pass
|