File size: 18,173 Bytes
6a62ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Wrapper around various loggers and progress bars (e.g., tqdm).
"""
import atexit
import json
import logging
import os
import sys
from collections import OrderedDict
from contextlib import contextmanager
from numbers import Number
from typing import Optional
import torch
from .meters import AverageMeter, StopwatchMeter, TimeMeter
logger = logging.getLogger(__name__)
def progress_bar(
iterator,
log_format: Optional[str] = None,
log_interval: int = 100,
log_file: Optional[str] = None,
epoch: Optional[int] = None,
prefix: Optional[str] = None,
aim_repo: Optional[str] = None,
aim_run_hash: Optional[str] = None,
aim_param_checkpoint_dir: Optional[str] = None,
tensorboard_logdir: Optional[str] = None,
default_log_format: str = "tqdm",
wandb_project: Optional[str] = None,
wandb_run_name: Optional[str] = None,
azureml_logging: Optional[bool] = False,
):
if log_format is None:
log_format = default_log_format
if log_file is not None:
handler = logging.FileHandler(filename=log_file)
logger.addHandler(handler)
if log_format == "tqdm" and not sys.stderr.isatty():
log_format = "simple"
if log_format == "json":
bar = JsonProgressBar(iterator, epoch, prefix, log_interval)
elif log_format == "none":
bar = NoopProgressBar(iterator, epoch, prefix)
elif log_format == "simple":
bar = SimpleProgressBar(iterator, epoch, prefix, log_interval)
elif log_format == "tqdm":
bar = TqdmProgressBar(iterator, epoch, prefix)
else:
raise ValueError("Unknown log format: {}".format(log_format))
if aim_repo:
bar = AimProgressBarWrapper(
bar,
aim_repo=aim_repo,
aim_run_hash=aim_run_hash,
aim_param_checkpoint_dir=aim_param_checkpoint_dir,
)
if tensorboard_logdir:
try:
# [FB only] custom wrapper for TensorBoard
import palaas # noqa
from .fb_tbmf_wrapper import FbTbmfWrapper
bar = FbTbmfWrapper(bar, log_interval)
except ImportError:
bar = TensorboardProgressBarWrapper(bar, tensorboard_logdir)
if wandb_project:
bar = WandBProgressBarWrapper(bar, wandb_project, run_name=wandb_run_name)
if azureml_logging:
bar = AzureMLProgressBarWrapper(bar)
return bar
def build_progress_bar(
args,
iterator,
epoch: Optional[int] = None,
prefix: Optional[str] = None,
default: str = "tqdm",
no_progress_bar: str = "none",
):
"""Legacy wrapper that takes an argparse.Namespace."""
if getattr(args, "no_progress_bar", False):
default = no_progress_bar
if getattr(args, "distributed_rank", 0) == 0:
tensorboard_logdir = getattr(args, "tensorboard_logdir", None)
else:
tensorboard_logdir = None
return progress_bar(
iterator,
log_format=args.log_format,
log_interval=args.log_interval,
epoch=epoch,
prefix=prefix,
tensorboard_logdir=tensorboard_logdir,
default_log_format=default,
)
def format_stat(stat):
if isinstance(stat, Number):
stat = "{:g}".format(stat)
elif isinstance(stat, AverageMeter):
stat = "{:.3f}".format(stat.avg)
elif isinstance(stat, TimeMeter):
stat = "{:g}".format(round(stat.avg))
elif isinstance(stat, StopwatchMeter):
stat = "{:g}".format(round(stat.sum))
elif torch.is_tensor(stat):
stat = stat.tolist()
return stat
class BaseProgressBar(object):
"""Abstract class for progress bars."""
def __init__(self, iterable, epoch=None, prefix=None):
self.iterable = iterable
self.n = getattr(iterable, "n", 0)
self.epoch = epoch
self.prefix = ""
if epoch is not None:
self.prefix += "epoch {:03d}".format(epoch)
if prefix is not None:
self.prefix += (" | " if self.prefix != "" else "") + prefix
def __len__(self):
return len(self.iterable)
def __enter__(self):
return self
def __exit__(self, *exc):
return False
def __iter__(self):
raise NotImplementedError
def log(self, stats, tag=None, step=None):
"""Log intermediate stats according to log_interval."""
raise NotImplementedError
def print(self, stats, tag=None, step=None):
"""Print end-of-epoch stats."""
raise NotImplementedError
def update_config(self, config):
"""Log latest configuration."""
pass
def _str_commas(self, stats):
return ", ".join(key + "=" + stats[key].strip() for key in stats.keys())
def _str_pipes(self, stats):
return " | ".join(key + " " + stats[key].strip() for key in stats.keys())
def _format_stats(self, stats):
postfix = OrderedDict(stats)
# Preprocess stats according to datatype
for key in postfix.keys():
postfix[key] = str(format_stat(postfix[key]))
return postfix
@contextmanager
def rename_logger(logger, new_name):
old_name = logger.name
if new_name is not None:
logger.name = new_name
yield logger
logger.name = old_name
class JsonProgressBar(BaseProgressBar):
"""Log output in JSON format."""
def __init__(self, iterable, epoch=None, prefix=None, log_interval=1000):
super().__init__(iterable, epoch, prefix)
self.log_interval = log_interval
self.i = None
self.size = None
def __iter__(self):
self.size = len(self.iterable)
for i, obj in enumerate(self.iterable, start=self.n):
self.i = i
yield obj
def log(self, stats, tag=None, step=None):
"""Log intermediate stats according to log_interval."""
step = step or self.i or 0
if step > 0 and self.log_interval is not None and step % self.log_interval == 0:
update = (
self.epoch - 1 + (self.i + 1) / float(self.size)
if self.epoch is not None
else None
)
stats = self._format_stats(stats, epoch=self.epoch, update=update)
with rename_logger(logger, tag):
logger.info(json.dumps(stats))
def print(self, stats, tag=None, step=None):
"""Print end-of-epoch stats."""
self.stats = stats
if tag is not None:
self.stats = OrderedDict(
[(tag + "_" + k, v) for k, v in self.stats.items()]
)
stats = self._format_stats(self.stats, epoch=self.epoch)
with rename_logger(logger, tag):
logger.info(json.dumps(stats))
def _format_stats(self, stats, epoch=None, update=None):
postfix = OrderedDict()
if epoch is not None:
postfix["epoch"] = epoch
if update is not None:
postfix["update"] = round(update, 3)
# Preprocess stats according to datatype
for key in stats.keys():
postfix[key] = format_stat(stats[key])
return postfix
class NoopProgressBar(BaseProgressBar):
"""No logging."""
def __init__(self, iterable, epoch=None, prefix=None):
super().__init__(iterable, epoch, prefix)
def __iter__(self):
for obj in self.iterable:
yield obj
def log(self, stats, tag=None, step=None):
"""Log intermediate stats according to log_interval."""
pass
def print(self, stats, tag=None, step=None):
"""Print end-of-epoch stats."""
pass
class SimpleProgressBar(BaseProgressBar):
"""A minimal logger for non-TTY environments."""
def __init__(self, iterable, epoch=None, prefix=None, log_interval=1000):
super().__init__(iterable, epoch, prefix)
self.log_interval = log_interval
self.i = None
self.size = None
def __iter__(self):
self.size = len(self.iterable)
for i, obj in enumerate(self.iterable, start=self.n):
self.i = i
yield obj
def log(self, stats, tag=None, step=None):
"""Log intermediate stats according to log_interval."""
step = step or self.i or 0
if step > 0 and self.log_interval is not None and step % self.log_interval == 0:
stats = self._format_stats(stats)
postfix = self._str_commas(stats)
with rename_logger(logger, tag):
logger.info(
"{}: {:5d} / {:d} {}".format(
self.prefix, self.i + 1, self.size, postfix
)
)
def print(self, stats, tag=None, step=None):
"""Print end-of-epoch stats."""
postfix = self._str_pipes(self._format_stats(stats))
with rename_logger(logger, tag):
logger.info("{} | {}".format(self.prefix, postfix))
class TqdmProgressBar(BaseProgressBar):
"""Log to tqdm."""
def __init__(self, iterable, epoch=None, prefix=None):
super().__init__(iterable, epoch, prefix)
from tqdm import tqdm
self.tqdm = tqdm(
iterable,
self.prefix,
leave=False,
disable=(logger.getEffectiveLevel() > logging.INFO),
)
def __iter__(self):
return iter(self.tqdm)
def log(self, stats, tag=None, step=None):
"""Log intermediate stats according to log_interval."""
self.tqdm.set_postfix(self._format_stats(stats), refresh=False)
def print(self, stats, tag=None, step=None):
"""Print end-of-epoch stats."""
postfix = self._str_pipes(self._format_stats(stats))
with rename_logger(logger, tag):
logger.info("{} | {}".format(self.prefix, postfix))
try:
import functools
from aim import Repo as AimRepo
@functools.lru_cache()
def get_aim_run(repo, run_hash):
from aim import Run
return Run(run_hash=run_hash, repo=repo)
except ImportError:
get_aim_run = None
AimRepo = None
class AimProgressBarWrapper(BaseProgressBar):
"""Log to Aim."""
def __init__(self, wrapped_bar, aim_repo, aim_run_hash, aim_param_checkpoint_dir):
self.wrapped_bar = wrapped_bar
if get_aim_run is None:
self.run = None
logger.warning("Aim not found, please install with: pip install aim")
else:
logger.info(f"Storing logs at Aim repo: {aim_repo}")
if not aim_run_hash:
# Find run based on save_dir parameter
query = f"run.checkpoint.save_dir == '{aim_param_checkpoint_dir}'"
try:
runs_generator = AimRepo(aim_repo).query_runs(query)
run = next(runs_generator.iter_runs())
aim_run_hash = run.run.hash
except Exception:
pass
if aim_run_hash:
logger.info(f"Appending to run: {aim_run_hash}")
self.run = get_aim_run(aim_repo, aim_run_hash)
def __iter__(self):
return iter(self.wrapped_bar)
def log(self, stats, tag=None, step=None):
"""Log intermediate stats to Aim."""
self._log_to_aim(stats, tag, step)
self.wrapped_bar.log(stats, tag=tag, step=step)
def print(self, stats, tag=None, step=None):
"""Print end-of-epoch stats."""
self._log_to_aim(stats, tag, step)
self.wrapped_bar.print(stats, tag=tag, step=step)
def update_config(self, config):
"""Log latest configuration."""
if self.run is not None:
for key in config:
self.run.set(key, config[key], strict=False)
self.wrapped_bar.update_config(config)
def _log_to_aim(self, stats, tag=None, step=None):
if self.run is None:
return
if step is None:
step = stats["num_updates"]
if "train" in tag:
context = {"tag": tag, "subset": "train"}
elif "val" in tag:
context = {"tag": tag, "subset": "val"}
else:
context = {"tag": tag}
for key in stats.keys() - {"num_updates"}:
self.run.track(stats[key], name=key, step=step, context=context)
try:
_tensorboard_writers = {}
from torch.utils.tensorboard import SummaryWriter
except ImportError:
try:
from tensorboardX import SummaryWriter
except ImportError:
SummaryWriter = None
def _close_writers():
for w in _tensorboard_writers.values():
w.close()
atexit.register(_close_writers)
class TensorboardProgressBarWrapper(BaseProgressBar):
"""Log to tensorboard."""
def __init__(self, wrapped_bar, tensorboard_logdir):
self.wrapped_bar = wrapped_bar
self.tensorboard_logdir = tensorboard_logdir
if SummaryWriter is None:
logger.warning(
"tensorboard not found, please install with: pip install tensorboard"
)
def _writer(self, key):
if SummaryWriter is None:
return None
_writers = _tensorboard_writers
if key not in _writers:
_writers[key] = SummaryWriter(os.path.join(self.tensorboard_logdir, key))
_writers[key].add_text("sys.argv", " ".join(sys.argv))
return _writers[key]
def __iter__(self):
return iter(self.wrapped_bar)
def log(self, stats, tag=None, step=None):
"""Log intermediate stats to tensorboard."""
self._log_to_tensorboard(stats, tag, step)
self.wrapped_bar.log(stats, tag=tag, step=step)
def print(self, stats, tag=None, step=None):
"""Print end-of-epoch stats."""
self._log_to_tensorboard(stats, tag, step)
self.wrapped_bar.print(stats, tag=tag, step=step)
def update_config(self, config):
"""Log latest configuration."""
# TODO add hparams to Tensorboard
self.wrapped_bar.update_config(config)
def _log_to_tensorboard(self, stats, tag=None, step=None):
writer = self._writer(tag or "")
if writer is None:
return
if step is None:
step = stats["num_updates"]
for key in stats.keys() - {"num_updates"}:
if isinstance(stats[key], AverageMeter):
writer.add_scalar(key, stats[key].val, step)
elif isinstance(stats[key], Number):
writer.add_scalar(key, stats[key], step)
elif torch.is_tensor(stats[key]) and stats[key].numel() == 1:
writer.add_scalar(key, stats[key].item(), step)
writer.flush()
try:
import wandb
except ImportError:
wandb = None
class WandBProgressBarWrapper(BaseProgressBar):
"""Log to Weights & Biases."""
def __init__(self, wrapped_bar, wandb_project, run_name=None):
self.wrapped_bar = wrapped_bar
if wandb is None:
logger.warning("wandb not found, pip install wandb")
return
# reinit=False to ensure if wandb.init() is called multiple times
# within one process it still references the same run
wandb.init(project=wandb_project, reinit=False, name=run_name)
def __iter__(self):
return iter(self.wrapped_bar)
def log(self, stats, tag=None, step=None):
"""Log intermediate stats to tensorboard."""
self._log_to_wandb(stats, tag, step)
self.wrapped_bar.log(stats, tag=tag, step=step)
def print(self, stats, tag=None, step=None):
"""Print end-of-epoch stats."""
self._log_to_wandb(stats, tag, step)
self.wrapped_bar.print(stats, tag=tag, step=step)
def update_config(self, config):
"""Log latest configuration."""
if wandb is not None:
wandb.config.update(config)
self.wrapped_bar.update_config(config)
def _log_to_wandb(self, stats, tag=None, step=None):
if wandb is None:
return
if step is None:
step = stats["num_updates"]
prefix = "" if tag is None else tag + "/"
for key in stats.keys() - {"num_updates"}:
if isinstance(stats[key], AverageMeter):
wandb.log({prefix + key: stats[key].val}, step=step)
elif isinstance(stats[key], Number):
wandb.log({prefix + key: stats[key]}, step=step)
try:
from azureml.core import Run
except ImportError:
Run = None
class AzureMLProgressBarWrapper(BaseProgressBar):
"""Log to Azure ML"""
def __init__(self, wrapped_bar):
self.wrapped_bar = wrapped_bar
if Run is None:
logger.warning("azureml.core not found, pip install azureml-core")
return
self.run = Run.get_context()
def __exit__(self, *exc):
if Run is not None:
self.run.complete()
return False
def __iter__(self):
return iter(self.wrapped_bar)
def log(self, stats, tag=None, step=None):
"""Log intermediate stats to AzureML"""
self._log_to_azureml(stats, tag, step)
self.wrapped_bar.log(stats, tag=tag, step=step)
def print(self, stats, tag=None, step=None):
"""Print end-of-epoch stats"""
self._log_to_azureml(stats, tag, step)
self.wrapped_bar.print(stats, tag=tag, step=step)
def update_config(self, config):
"""Log latest configuration."""
self.wrapped_bar.update_config(config)
def _log_to_azureml(self, stats, tag=None, step=None):
if Run is None:
return
if step is None:
step = stats["num_updates"]
prefix = "" if tag is None else tag + "/"
for key in stats.keys() - {"num_updates"}:
name = prefix + key
if isinstance(stats[key], AverageMeter):
self.run.log_row(name=name, **{"step": step, key: stats[key].val})
elif isinstance(stats[key], Number):
self.run.log_row(name=name, **{"step": step, key: stats[key]})
|