File size: 7,863 Bytes
6a62ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import copy
import logging
from typing import Dict, List

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import utils
from fairseq.data import encoders
from fairseq.hub_utils import GeneratorHubInterface
from omegaconf import open_dict


logger = logging.getLogger(__name__)


class BARTHubInterface(GeneratorHubInterface):
    """A simple PyTorch Hub interface to BART.

    Usage: https://github.com/pytorch/fairseq/tree/main/examples/bart
    """

    def __init__(self, cfg, task, model):
        super().__init__(cfg, task, [model])
        self.model = self.models[0]

    def encode(
        self, sentence: str, *addl_sentences, no_separator=True
    ) -> torch.LongTensor:
        """
        BPE-encode a sentence (or multiple sentences).

        Every sequence begins with a beginning-of-sentence (`<s>`) symbol.
        Every sentence ends with an end-of-sentence (`</s>`).

        Example (single sentence): `<s> a b c </s>`
        Example (sentence pair): `<s> d e f </s> 1 2 3 </s>`

        The BPE encoding follows GPT-2. One subtle detail is that the GPT-2 BPE
        requires leading spaces. For example::

            >>> bart.encode('Hello world').tolist()
            [0, 31414, 232, 2]
            >>> bart.encode(' world').tolist()
            [0, 232, 2]
            >>> bart.encode('world').tolist()
            [0, 8331, 2]
        """
        tokens = self.bpe.encode(sentence)
        if len(tokens.split(" ")) > min(self.max_positions) - 2:
            tokens = " ".join(tokens.split(" ")[: min(self.max_positions) - 2])
        bpe_sentence = "<s> " + tokens + " </s>"
        for s in addl_sentences:
            bpe_sentence += " </s>" if not no_separator else ""
            bpe_sentence += " " + self.bpe.encode(s) + " </s>"
        tokens = self.task.source_dictionary.encode_line(bpe_sentence, append_eos=False)
        return tokens.long()

    def decode(self, tokens: torch.LongTensor):
        assert tokens.dim() == 1
        tokens = tokens.cpu().numpy()
        if tokens[0] == self.task.source_dictionary.bos():
            tokens = tokens[1:]  # remove <s>
        eos_mask = tokens == self.task.source_dictionary.eos()
        doc_mask = eos_mask[1:] & eos_mask[:-1]
        sentences = np.split(tokens, doc_mask.nonzero()[0] + 1)
        sentences = [
            self.bpe.decode(self.task.source_dictionary.string(s)) for s in sentences
        ]
        if len(sentences) == 1:
            return sentences[0]
        return sentences

    def _build_sample(self, src_tokens: List[torch.LongTensor]):
        # assert torch.is_tensor(src_tokens)
        dataset = self.task.build_dataset_for_inference(
            src_tokens,
            [x.numel() for x in src_tokens],
        )
        sample = dataset.collater(dataset)
        sample = utils.apply_to_sample(lambda tensor: tensor.to(self.device), sample)
        return sample

    def generate(
        self,
        tokenized_sentences: List[torch.LongTensor],
        *args,
        inference_step_args=None,
        skip_invalid_size_inputs=False,
        **kwargs
    ) -> List[List[Dict[str, torch.Tensor]]]:
        inference_step_args = inference_step_args or {}
        if "prefix_tokens" in inference_step_args:
            raise NotImplementedError("prefix generation not implemented for BART")
        res = []
        for batch in self._build_batches(tokenized_sentences, skip_invalid_size_inputs):
            src_tokens = batch["net_input"]["src_tokens"]
            inference_step_args["prefix_tokens"] = src_tokens.new_full(
                (src_tokens.size(0), 1), fill_value=self.task.source_dictionary.bos()
            ).to(device=self.device)
            results = super().generate(
                src_tokens,
                *args,
                inference_step_args=inference_step_args,
                skip_invalid_size_inputs=skip_invalid_size_inputs,
                **kwargs
            )
            for id, hypos in zip(batch["id"].tolist(), results):
                res.append((id, hypos))
        res = [hypos for _, hypos in sorted(res, key=lambda x: x[0])]
        return res

    def extract_features(
        self, tokens: torch.LongTensor, return_all_hiddens: bool = False
    ) -> torch.Tensor:
        if tokens.dim() == 1:
            tokens = tokens.unsqueeze(0)
        if tokens.size(-1) > min(self.model.max_positions()):
            raise ValueError(
                "tokens exceeds maximum length: {} > {}".format(
                    tokens.size(-1), self.model.max_positions()
                )
            )
        tokens.to(device=self.device),
        prev_output_tokens = tokens.clone()

        prev_output_tokens[:, 0] = tokens.gather(
            1,
            (tokens.ne(self.task.source_dictionary.pad()).sum(dim=1) - 1).unsqueeze(-1),
        ).squeeze()

        prev_output_tokens[:, 1:] = tokens[:, :-1]
        features, extra = self.model(
            src_tokens=tokens,
            src_lengths=None,
            prev_output_tokens=prev_output_tokens,
            features_only=True,
            return_all_hiddens=return_all_hiddens,
        )
        if return_all_hiddens:
            # convert from T x B x C -> B x T x C
            inner_states = extra["inner_states"]
            return [inner_state.transpose(0, 1) for inner_state in inner_states]
        else:
            return features  # just the last layer's features

    def register_classification_head(
        self, name: str, num_classes: int = None, embedding_size: int = None, **kwargs
    ):
        self.model.register_classification_head(
            name, num_classes=num_classes, embedding_size=embedding_size, **kwargs
        )

    def predict(self, head: str, tokens: torch.LongTensor, return_logits: bool = False):
        if tokens.dim() == 1:
            tokens = tokens.unsqueeze(0)
        features = self.extract_features(tokens.to(device=self.device))
        sentence_representation = features[
            tokens.eq(self.task.source_dictionary.eos()), :
        ].view(features.size(0), -1, features.size(-1))[:, -1, :]

        logits = self.model.classification_heads[head](sentence_representation)
        if return_logits:
            return logits
        return F.log_softmax(logits, dim=-1)

    def fill_mask(
        self,
        masked_inputs: List[str],
        topk: int = 5,
        match_source_len: bool = True,
        **generate_kwargs
    ):
        masked_token = "<mask>"
        batch_tokens = []
        for masked_input in masked_inputs:
            assert (
                masked_token in masked_input
            ), "please add one {} token for the input".format(masked_token)

            text_spans = masked_input.split(masked_token)
            text_spans_bpe = (
                (" {0} ".format(masked_token))
                .join([self.bpe.encode(text_span.rstrip()) for text_span in text_spans])
                .strip()
            )
            tokens = self.task.source_dictionary.encode_line(
                "<s> " + text_spans_bpe + " </s>",
                append_eos=False,
                add_if_not_exist=False,
            ).long()
            batch_tokens.append(tokens)

        # ensure beam size is at least as big as topk
        generate_kwargs["beam"] = max(
            topk,
            generate_kwargs.get("beam", -1),
        )
        generate_kwargs["match_source_len"] = match_source_len
        batch_hypos = self.generate(batch_tokens, **generate_kwargs)

        return [
            [(self.decode(hypo["tokens"]), hypo["score"]) for hypo in hypos[:topk]]
            for hypos in batch_hypos
        ]