File size: 20,507 Bytes
6a62ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Base classes for various fairseq models.
"""

import logging
from argparse import Namespace
from typing import Dict, List, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import utils
from fairseq.data import Dictionary
from fairseq.dataclass.utils import (
    convert_namespace_to_omegaconf,
    gen_parser_from_dataclass,
)
from fairseq.models import FairseqDecoder, FairseqEncoder
from omegaconf import DictConfig
from torch import Tensor


logger = logging.getLogger(__name__)


def check_type(module, expected_type):
    if hasattr(module, "unwrapped_module"):
        assert isinstance(
            module.unwrapped_module, expected_type
        ), f"{type(module.unwrapped_module)} != {expected_type}"
    else:
        assert isinstance(module, expected_type), f"{type(module)} != {expected_type}"


class BaseFairseqModel(nn.Module):
    """Base class for fairseq models."""

    def __init__(self):
        super().__init__()
        self._is_generation_fast = False

    @classmethod
    def add_args(cls, parser):
        """Add model-specific arguments to the parser."""
        dc = getattr(cls, "__dataclass", None)
        if dc is not None:
            # do not set defaults so that settings defaults from various architectures still works
            gen_parser_from_dataclass(parser, dc(), delete_default=True)

    @classmethod
    def build_model(cls, args, task):
        """Build a new model instance."""
        raise NotImplementedError("Model must implement the build_model method")

    def get_targets(self, sample, net_output):
        """Get targets from either the sample or the net's output."""
        return sample["target"]

    def get_normalized_probs(
        self,
        net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
        log_probs: bool,
        sample: Optional[Dict[str, Tensor]] = None,
    ):
        """Get normalized probabilities (or log probs) from a net's output."""
        return self.get_normalized_probs_scriptable(net_output, log_probs, sample)

    # TorchScript doesn't support super() method so that the scriptable Subclass
    # can't access the base class model in Torchscript.
    # Current workaround is to add a helper function with different name and
    # call the helper function from scriptable Subclass.
    def get_normalized_probs_scriptable(
        self,
        net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
        log_probs: bool,
        sample: Optional[Dict[str, Tensor]] = None,
    ):
        """Scriptable helper function for get_normalized_probs in ~BaseFairseqModel"""
        if hasattr(self, "decoder"):
            return self.decoder.get_normalized_probs(net_output, log_probs, sample)
        elif torch.is_tensor(net_output):
            # syntactic sugar for simple models which don't have a decoder
            # (e.g., the classification tutorial)
            logits = net_output.float()
            if log_probs:
                return F.log_softmax(logits, dim=-1)
            else:
                return F.softmax(logits, dim=-1)
        raise NotImplementedError

    def extract_features(self, *args, **kwargs):
        """Similar to *forward* but only return features."""
        return self(*args, **kwargs)

    def max_positions(self):
        """Maximum length supported by the model."""
        return None

    def load_state_dict(
        self,
        state_dict,
        strict=True,
        model_cfg: Optional[DictConfig] = None,
        args: Optional[Namespace] = None,
    ):
        """Copies parameters and buffers from *state_dict* into this module and
        its descendants.

        Overrides the method in :class:`nn.Module`. Compared with that method
        this additionally "upgrades" *state_dicts* from old checkpoints.
        """

        if model_cfg is None and args is not None:
            logger.warn(
                "using 'args' is deprecated, please update your code to use dataclass config"
            )
            model_cfg = convert_namespace_to_omegaconf(args).model

        self.upgrade_state_dict(state_dict)

        from fairseq.checkpoint_utils import prune_state_dict

        new_state_dict = prune_state_dict(state_dict, model_cfg)
        return super().load_state_dict(new_state_dict, strict)

    def upgrade_state_dict(self, state_dict):
        """Upgrade old state dicts to work with newer code."""
        self.upgrade_state_dict_named(state_dict, "")

    def upgrade_state_dict_named(self, state_dict, name):
        """Upgrade old state dicts to work with newer code.

        Args:
            state_dict (dict): state dictionary to upgrade, in place
            name (str): the state dict key corresponding to the current module
        """
        assert state_dict is not None

        def do_upgrade(m, prefix):
            if len(prefix) > 0:
                prefix += "."

            for n, c in m.named_children():
                name = prefix + n
                if hasattr(c, "upgrade_state_dict_named"):
                    c.upgrade_state_dict_named(state_dict, name)
                elif hasattr(c, "upgrade_state_dict"):
                    c.upgrade_state_dict(state_dict)
                do_upgrade(c, name)

        do_upgrade(self, name)

    def set_num_updates(self, num_updates):
        """State from trainer to pass along to model at every update."""
        for m in self.modules():
            if hasattr(m, "set_num_updates") and m != self:
                m.set_num_updates(num_updates)

    def prepare_for_inference_(self, cfg: DictConfig):
        """Prepare model for inference."""
        kwargs = {}
        kwargs["beamable_mm_beam_size"] = (
            None
            if getattr(cfg.generation, "no_beamable_mm", False)
            else getattr(cfg.generation, "beam", 5)
        )
        kwargs["need_attn"] = getattr(cfg.generation, "print_alignment", False)
        if getattr(cfg.generation, "retain_dropout", False):
            kwargs["retain_dropout"] = cfg.generation.retain_dropout
            kwargs["retain_dropout_modules"] = cfg.generation.retain_dropout_modules
        self.make_generation_fast_(**kwargs)

    def make_generation_fast_(self, **kwargs):
        """
        Legacy entry point to optimize model for faster generation.
        Prefer prepare_for_inference_.
        """
        if self._is_generation_fast:
            return  # only apply once
        self._is_generation_fast = True

        # remove weight norm from all modules in the network
        def apply_remove_weight_norm(module):
            try:
                nn.utils.remove_weight_norm(module)
            except (AttributeError, ValueError):  # this module didn't have weight norm
                return

        self.apply(apply_remove_weight_norm)

        def apply_make_generation_fast_(module, prefix):
            if len(prefix) > 0:
                prefix += "."

            base_func = BaseFairseqModel.make_generation_fast_
            for n, m in module.named_modules():
                if (
                    m != self
                    and hasattr(m, "make_generation_fast_")
                    # don't call this implementation again, e.g., if
                    # children modules also inherit from BaseFairseqModel
                    and m.make_generation_fast_.__func__ is not base_func
                ):
                    name = prefix + n
                    m.make_generation_fast_(name=name, **kwargs)

        apply_make_generation_fast_(self, "")

        def train(mode=True):
            if mode:
                raise RuntimeError("cannot train after make_generation_fast")

        # this model should no longer be used for training
        self.eval()
        self.train = train

    def prepare_for_onnx_export_(self, **kwargs):
        """Make model exportable via ONNX trace."""
        seen = set()

        def apply_prepare_for_onnx_export_(module):
            if (
                module != self
                and hasattr(module, "prepare_for_onnx_export_")
                and module not in seen
            ):
                seen.add(module)
                module.prepare_for_onnx_export_(**kwargs)

        self.apply(apply_prepare_for_onnx_export_)

    @classmethod
    def from_pretrained(
        cls,
        model_name_or_path,
        checkpoint_file="model.pt",
        data_name_or_path=".",
        **kwargs,
    ):
        """
        Load a :class:`~fairseq.models.FairseqModel` from a pre-trained model
        file. Downloads and caches the pre-trained model file if needed.

        The base implementation returns a
        :class:`~fairseq.hub_utils.GeneratorHubInterface`, which can be used to
        generate translations or sample from language models. The underlying
        :class:`~fairseq.models.FairseqModel` can be accessed via the
        *generator.models* attribute.

        Other models may override this to implement custom hub interfaces.

        Args:
            model_name_or_path (str): either the name of a pre-trained model to
                load or a path/URL to a pre-trained model state dict
            checkpoint_file (str, optional): colon-separated list of checkpoint
                files in the model archive to ensemble (default: 'model.pt')
            data_name_or_path (str, optional): point args.data to the archive
                at the given path/URL. Can start with '.' or './' to reuse the
                model archive path.
        """
        from fairseq import hub_utils

        x = hub_utils.from_pretrained(
            model_name_or_path,
            checkpoint_file,
            data_name_or_path,
            archive_map=cls.hub_models(),
            **kwargs,
        )
        logger.info(x["args"])
        return hub_utils.GeneratorHubInterface(x["args"], x["task"], x["models"])

    @classmethod
    def hub_models(cls):
        return {}


class FairseqEncoderDecoderModel(BaseFairseqModel):
    """Base class for encoder-decoder models.

    Args:
        encoder (FairseqEncoder): the encoder
        decoder (FairseqDecoder): the decoder
    """

    def __init__(self, encoder, decoder):
        super().__init__()

        self.encoder = encoder
        self.decoder = decoder

        check_type(self.encoder, FairseqEncoder)
        check_type(self.decoder, FairseqDecoder)

    def forward(self, src_tokens, src_lengths, prev_output_tokens, **kwargs):
        """
        Run the forward pass for an encoder-decoder model.

        First feed a batch of source tokens through the encoder. Then, feed the
        encoder output and previous decoder outputs (i.e., teacher forcing) to
        the decoder to produce the next outputs::

            encoder_out = self.encoder(src_tokens, src_lengths)
            return self.decoder(prev_output_tokens, encoder_out)

        Args:
            src_tokens (LongTensor): tokens in the source language of shape
                `(batch, src_len)`
            src_lengths (LongTensor): source sentence lengths of shape `(batch)`
            prev_output_tokens (LongTensor): previous decoder outputs of shape
                `(batch, tgt_len)`, for teacher forcing

        Returns:
            tuple:
                - the decoder's output of shape `(batch, tgt_len, vocab)`
                - a dictionary with any model-specific outputs
        """
        encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs)
        decoder_out = self.decoder(
            prev_output_tokens, encoder_out=encoder_out, **kwargs
        )
        return decoder_out

    def forward_decoder(self, prev_output_tokens, **kwargs):
        return self.decoder(prev_output_tokens, **kwargs)

    def extract_features(self, src_tokens, src_lengths, prev_output_tokens, **kwargs):
        """
        Similar to *forward* but only return features.

        Returns:
            tuple:
                - the decoder's features of shape `(batch, tgt_len, embed_dim)`
                - a dictionary with any model-specific outputs
        """
        encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs)
        features = self.decoder.extract_features(
            prev_output_tokens, encoder_out=encoder_out, **kwargs
        )
        return features

    def output_layer(self, features, **kwargs):
        """Project features to the default output size (typically vocabulary size)."""
        return self.decoder.output_layer(features, **kwargs)

    def max_positions(self):
        """Maximum length supported by the model."""
        return (self.encoder.max_positions(), self.decoder.max_positions())

    def max_decoder_positions(self):
        """Maximum length supported by the decoder."""
        return self.decoder.max_positions()


class FairseqModel(FairseqEncoderDecoderModel):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        utils.deprecation_warning(
            "FairseqModel is deprecated, please use FairseqEncoderDecoderModel "
            "or BaseFairseqModel instead",
            stacklevel=4,
        )


class FairseqMultiModel(BaseFairseqModel):
    """Base class for combining multiple encoder-decoder models."""

    def __init__(self, encoders, decoders):
        super().__init__()
        assert encoders.keys() == decoders.keys()
        self.keys = list(encoders.keys())
        for key in self.keys:
            check_type(encoders[key], FairseqEncoder)
            check_type(decoders[key], FairseqDecoder)

        self.models = nn.ModuleDict(
            {
                key: FairseqEncoderDecoderModel(encoders[key], decoders[key])
                for key in self.keys
            }
        )

    @staticmethod
    def build_shared_embeddings(
        dicts: Dict[str, Dictionary],
        langs: List[str],
        embed_dim: int,
        build_embedding: callable,
        pretrained_embed_path: Optional[str] = None,
    ):
        """
        Helper function to build shared embeddings for a set of languages after
        checking that all dicts corresponding to those languages are equivalent.

        Args:
            dicts: Dict of lang_id to its corresponding Dictionary
            langs: languages that we want to share embeddings for
            embed_dim: embedding dimension
            build_embedding: callable function to actually build the embedding
            pretrained_embed_path: Optional path to load pretrained embeddings
        """
        shared_dict = dicts[langs[0]]
        if any(dicts[lang] != shared_dict for lang in langs):
            raise ValueError(
                "--share-*-embeddings requires a joined dictionary: "
                "--share-encoder-embeddings requires a joined source "
                "dictionary, --share-decoder-embeddings requires a joined "
                "target dictionary, and --share-all-embeddings requires a "
                "joint source + target dictionary."
            )
        return build_embedding(shared_dict, embed_dim, pretrained_embed_path)

    def forward(self, src_tokens, src_lengths, prev_output_tokens, **kwargs):
        raise NotImplementedError

    def max_positions(self):
        """Maximum length supported by the model."""
        return {
            key: (
                self.models[key].encoder.max_positions(),
                self.models[key].decoder.max_positions(),
            )
            for key in self.keys
        }

    def max_decoder_positions(self):
        """Maximum length supported by the decoder."""
        return min(model.decoder.max_positions() for model in self.models.values())

    @property
    def encoder(self):
        return self.models[self.keys[0]].encoder

    @property
    def decoder(self):
        return self.models[self.keys[0]].decoder

    def forward_decoder(self, prev_output_tokens, **kwargs):
        return self.decoder(prev_output_tokens, **kwargs)

    def load_state_dict(
        self,
        state_dict,
        strict=True,
        model_cfg=None,
        args: Optional[Namespace] = None,
    ):
        """Copies parameters and buffers from *state_dict* into this module and
        its descendants.

        Overrides the method in :class:`nn.Module`. Compared with that method
        this additionally "upgrades" *state_dicts* from old checkpoints.
        """

        if model_cfg is None and args is not None:
            logger.warn(
                "using 'args' is deprecated, please update your code to use dataclass config"
            )
            model_cfg = convert_namespace_to_omegaconf(args).model

        self.upgrade_state_dict(state_dict)

        from fairseq.checkpoint_utils import prune_state_dict

        new_state_dict = prune_state_dict(state_dict, model_cfg)
        return super().load_state_dict(new_state_dict, strict)


class FairseqLanguageModel(BaseFairseqModel):
    """Base class for decoder-only models.

    Args:
        decoder (FairseqDecoder): the decoder
    """

    def __init__(self, decoder):
        super().__init__()
        self.decoder = decoder
        check_type(self.decoder, FairseqDecoder)

    def forward(self, src_tokens, **kwargs):
        """
        Run the forward pass for a decoder-only model.

        Feeds a batch of tokens through the decoder to predict the next tokens.

        Args:
            src_tokens (LongTensor): tokens on which to condition the decoder,
                of shape `(batch, tgt_len)`
            src_lengths (LongTensor): source sentence lengths of shape `(batch)`

        Returns:
            tuple:
                - the decoder's output of shape `(batch, seq_len, vocab)`
                - a dictionary with any model-specific outputs
        """
        return self.decoder(src_tokens, **kwargs)

    def forward_decoder(self, prev_output_tokens, **kwargs):
        return self.decoder(prev_output_tokens, **kwargs)

    def extract_features(self, src_tokens, **kwargs):
        """
        Similar to *forward* but only return features.

        Returns:
            tuple:
                - the decoder's features of shape `(batch, seq_len, embed_dim)`
                - a dictionary with any model-specific outputs
        """
        return self.decoder.extract_features(src_tokens, **kwargs)

    def output_layer(self, features, **kwargs):
        """Project features to the default output size (typically vocabulary size)."""
        return self.decoder.output_layer(features, **kwargs)

    def max_positions(self):
        """Maximum length supported by the model."""
        return self.decoder.max_positions()

    def max_decoder_positions(self):
        """Maximum length supported by the decoder."""
        return self.decoder.max_positions()

    @property
    def supported_targets(self):
        return {"future"}


class FairseqEncoderModel(BaseFairseqModel):
    """Base class for encoder-only models.

    Args:
        encoder (FairseqEncoder): the encoder
    """

    def __init__(self, encoder):
        super().__init__()
        self.encoder = encoder
        check_type(self.encoder, FairseqEncoder)

    def forward(self, src_tokens, src_lengths, **kwargs):
        """
        Run the forward pass for a encoder-only model.

        Feeds a batch of tokens through the encoder to generate features.

        Args:
            src_tokens (LongTensor): input tokens of shape `(batch, src_len)`
            src_lengths (LongTensor): source sentence lengths of shape `(batch)`

        Returns:
            the encoder's output, typically of shape `(batch, src_len, features)`
        """
        return self.encoder(src_tokens, src_lengths, **kwargs)

    def get_normalized_probs(self, net_output, log_probs, sample=None):
        """Get normalized probabilities (or log probs) from a net's output."""
        encoder_out = net_output["encoder_out"]
        if torch.is_tensor(encoder_out):
            logits = encoder_out.float()
            if log_probs:
                return F.log_softmax(logits, dim=-1)
            else:
                return F.softmax(logits, dim=-1)
        raise NotImplementedError

    def max_positions(self):
        """Maximum length supported by the model."""
        return self.encoder.max_positions()