File size: 28,661 Bytes
6a62ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math

import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import utils
from fairseq.models import (
    FairseqEncoder,
    FairseqEncoderDecoderModel,
    FairseqIncrementalDecoder,
    register_model,
    register_model_architecture,
)
from fairseq.modules import (
    AdaptiveSoftmax,
    BeamableMM,
    FairseqDropout,
    GradMultiply,
    LearnedPositionalEmbedding,
    LinearizedConvolution,
)


@register_model("fconv")
class FConvModel(FairseqEncoderDecoderModel):
    """
    A fully convolutional model, i.e. a convolutional encoder and a
    convolutional decoder, as described in `"Convolutional Sequence to Sequence
    Learning" (Gehring et al., 2017) <https://arxiv.org/abs/1705.03122>`_.

    Args:
        encoder (FConvEncoder): the encoder
        decoder (FConvDecoder): the decoder

    The Convolutional model provides the following named architectures and
    command-line arguments:

    .. argparse::
        :ref: fairseq.models.fconv_parser
        :prog:
    """

    @classmethod
    def hub_models(cls):
        def moses_subword(path):
            return {
                "path": path,
                "tokenizer": "moses",
                "bpe": "subword_nmt",
            }

        return {
            "conv.wmt14.en-fr": moses_subword(
                "https://dl.fbaipublicfiles.com/fairseq/models/wmt14.v2.en-fr.fconv-py.tar.bz2"
            ),
            "conv.wmt14.en-de": moses_subword(
                "https://dl.fbaipublicfiles.com/fairseq/models/wmt14.en-de.fconv-py.tar.bz2"
            ),
            "conv.wmt17.en-de": moses_subword(
                "https://dl.fbaipublicfiles.com/fairseq/models/wmt17.v2.en-de.fconv-py.tar.bz2"
            ),
        }

    def __init__(self, encoder, decoder):
        super().__init__(encoder, decoder)
        self.encoder.num_attention_layers = sum(
            layer is not None for layer in decoder.attention
        )

    @staticmethod
    def add_args(parser):
        """Add model-specific arguments to the parser."""
        # fmt: off
        parser.add_argument('--dropout', type=float, metavar='D',
                            help='dropout probability')
        parser.add_argument('--encoder-embed-dim', type=int, metavar='N',
                            help='encoder embedding dimension')
        parser.add_argument('--encoder-embed-path', type=str, metavar='STR',
                            help='path to pre-trained encoder embedding')
        parser.add_argument('--encoder-layers', type=str, metavar='EXPR',
                            help='encoder layers [(dim, kernel_size), ...]')
        parser.add_argument('--decoder-embed-dim', type=int, metavar='N',
                            help='decoder embedding dimension')
        parser.add_argument('--decoder-embed-path', type=str, metavar='STR',
                            help='path to pre-trained decoder embedding')
        parser.add_argument('--decoder-layers', type=str, metavar='EXPR',
                            help='decoder layers [(dim, kernel_size), ...]')
        parser.add_argument('--decoder-out-embed-dim', type=int, metavar='N',
                            help='decoder output embedding dimension')
        parser.add_argument('--decoder-attention', type=str, metavar='EXPR',
                            help='decoder attention [True, ...]')
        parser.add_argument('--share-input-output-embed', action='store_true',
                            help='share input and output embeddings (requires'
                                 ' --decoder-out-embed-dim and --decoder-embed-dim'
                                 ' to be equal)')
        # fmt: on

    @classmethod
    def build_model(cls, args, task):
        """Build a new model instance."""
        # make sure that all args are properly defaulted (in case there are any new ones)
        base_architecture(args)

        encoder_embed_dict = None
        if args.encoder_embed_path:
            encoder_embed_dict = utils.parse_embedding(args.encoder_embed_path)
            utils.print_embed_overlap(encoder_embed_dict, task.source_dictionary)

        decoder_embed_dict = None
        if args.decoder_embed_path:
            decoder_embed_dict = utils.parse_embedding(args.decoder_embed_path)
            utils.print_embed_overlap(decoder_embed_dict, task.target_dictionary)

        encoder = FConvEncoder(
            dictionary=task.source_dictionary,
            embed_dim=args.encoder_embed_dim,
            embed_dict=encoder_embed_dict,
            convolutions=eval(args.encoder_layers),
            dropout=args.dropout,
            max_positions=args.max_source_positions,
        )
        decoder = FConvDecoder(
            dictionary=task.target_dictionary,
            embed_dim=args.decoder_embed_dim,
            embed_dict=decoder_embed_dict,
            convolutions=eval(args.decoder_layers),
            out_embed_dim=args.decoder_out_embed_dim,
            attention=eval(args.decoder_attention),
            dropout=args.dropout,
            max_positions=args.max_target_positions,
            share_embed=args.share_input_output_embed,
        )
        return FConvModel(encoder, decoder)


class FConvEncoder(FairseqEncoder):
    """
    Convolutional encoder consisting of `len(convolutions)` layers.

    Args:
        dictionary (~fairseq.data.Dictionary): encoding dictionary
        embed_dim (int, optional): embedding dimension
        embed_dict (str, optional): filename from which to load pre-trained
            embeddings
        max_positions (int, optional): maximum supported input sequence length
        convolutions (list, optional): the convolutional layer structure. Each
            list item `i` corresponds to convolutional layer `i`. Layers are
            given as ``(out_channels, kernel_width, [residual])``. Residual
            connections are added between layers when ``residual=1`` (which is
            the default behavior).
        dropout (float, optional): dropout to be applied before each conv layer
    """

    def __init__(
        self,
        dictionary,
        embed_dim=512,
        embed_dict=None,
        max_positions=1024,
        convolutions=((512, 3),) * 20,
        dropout=0.1,
    ):
        super().__init__(dictionary)
        self.dropout_module = FairseqDropout(
            dropout, module_name=self.__class__.__name__
        )
        self.num_attention_layers = None

        num_embeddings = len(dictionary)
        self.padding_idx = dictionary.pad()
        self.embed_tokens = Embedding(num_embeddings, embed_dim, self.padding_idx)
        if embed_dict:
            self.embed_tokens = utils.load_embedding(
                embed_dict, self.dictionary, self.embed_tokens
            )

        self.embed_positions = PositionalEmbedding(
            max_positions,
            embed_dim,
            self.padding_idx,
        )

        convolutions = extend_conv_spec(convolutions)
        in_channels = convolutions[0][0]
        self.fc1 = Linear(embed_dim, in_channels, dropout=dropout)
        self.projections = nn.ModuleList()
        self.convolutions = nn.ModuleList()
        self.residuals = []

        layer_in_channels = [in_channels]
        for _, (out_channels, kernel_size, residual) in enumerate(convolutions):
            if residual == 0:
                residual_dim = out_channels
            else:
                residual_dim = layer_in_channels[-residual]
            self.projections.append(
                Linear(residual_dim, out_channels)
                if residual_dim != out_channels
                else None
            )
            if kernel_size % 2 == 1:
                padding = kernel_size // 2
            else:
                padding = 0
            self.convolutions.append(
                ConvTBC(
                    in_channels,
                    out_channels * 2,
                    kernel_size,
                    dropout=dropout,
                    padding=padding,
                )
            )
            self.residuals.append(residual)
            in_channels = out_channels
            layer_in_channels.append(out_channels)
        self.fc2 = Linear(in_channels, embed_dim)

    def forward(self, src_tokens, src_lengths):
        """
        Args:
            src_tokens (LongTensor): tokens in the source language of shape
                `(batch, src_len)`
            src_lengths (LongTensor): lengths of each source sentence of shape
                `(batch)`

        Returns:
            dict:
                - **encoder_out** (tuple): a tuple with two elements, where the
                  first element is the last encoder layer's output and the
                  second element is the same quantity summed with the input
                  embedding (used for attention). The shape of both tensors is
                  `(batch, src_len, embed_dim)`.
                - **encoder_padding_mask** (ByteTensor): the positions of
                  padding elements of shape `(batch, src_len)`
        """
        # embed tokens and positions
        x = self.embed_tokens(src_tokens) + self.embed_positions(src_tokens)
        x = self.dropout_module(x)
        input_embedding = x

        # project to size of convolution
        x = self.fc1(x)

        # used to mask padding in input
        encoder_padding_mask = src_tokens.eq(self.padding_idx).t()  # -> T x B
        if not encoder_padding_mask.any():
            encoder_padding_mask = None

        # B x T x C -> T x B x C
        x = x.transpose(0, 1)

        residuals = [x]
        # temporal convolutions
        for proj, conv, res_layer in zip(
            self.projections, self.convolutions, self.residuals
        ):
            if res_layer > 0:
                residual = residuals[-res_layer]
                residual = residual if proj is None else proj(residual)
            else:
                residual = None

            if encoder_padding_mask is not None:
                x = x.masked_fill(encoder_padding_mask.unsqueeze(-1), 0)

            x = self.dropout_module(x)
            if conv.kernel_size[0] % 2 == 1:
                # padding is implicit in the conv
                x = conv(x)
            else:
                padding_l = (conv.kernel_size[0] - 1) // 2
                padding_r = conv.kernel_size[0] // 2
                x = F.pad(x, (0, 0, 0, 0, padding_l, padding_r))
                x = conv(x)
            x = F.glu(x, dim=2)

            if residual is not None:
                x = (x + residual) * math.sqrt(0.5)
            residuals.append(x)

        # T x B x C -> B x T x C
        x = x.transpose(1, 0)

        # project back to size of embedding
        x = self.fc2(x)

        if encoder_padding_mask is not None:
            encoder_padding_mask = encoder_padding_mask.t()  # -> B x T
            x = x.masked_fill(encoder_padding_mask.unsqueeze(-1), 0)

        # scale gradients (this only affects backward, not forward)
        x = GradMultiply.apply(x, 1.0 / (2.0 * self.num_attention_layers))

        # add output to input embedding for attention
        y = (x + input_embedding) * math.sqrt(0.5)

        return {
            "encoder_out": (x, y),
            "encoder_padding_mask": encoder_padding_mask,  # B x T
        }

    def reorder_encoder_out(self, encoder_out, new_order):
        if encoder_out["encoder_out"] is not None:
            encoder_out["encoder_out"] = (
                encoder_out["encoder_out"][0].index_select(0, new_order),
                encoder_out["encoder_out"][1].index_select(0, new_order),
            )
        if encoder_out["encoder_padding_mask"] is not None:
            encoder_out["encoder_padding_mask"] = encoder_out[
                "encoder_padding_mask"
            ].index_select(0, new_order)
        return encoder_out

    def max_positions(self):
        """Maximum input length supported by the encoder."""
        return self.embed_positions.max_positions


class AttentionLayer(nn.Module):
    def __init__(self, conv_channels, embed_dim, bmm=None):
        super().__init__()
        # projects from output of convolution to embedding dimension
        self.in_projection = Linear(conv_channels, embed_dim)
        # projects from embedding dimension to convolution size
        self.out_projection = Linear(embed_dim, conv_channels)

        self.bmm = bmm if bmm is not None else torch.bmm

    def forward(self, x, target_embedding, encoder_out, encoder_padding_mask):
        residual = x

        # attention
        x = (self.in_projection(x) + target_embedding) * math.sqrt(0.5)
        x = self.bmm(x, encoder_out[0])

        # don't attend over padding
        if encoder_padding_mask is not None:
            x = (
                x.float()
                .masked_fill(encoder_padding_mask.unsqueeze(1), float("-inf"))
                .type_as(x)
            )  # FP16 support: cast to float and back

        # softmax over last dim
        sz = x.size()
        x = F.softmax(x.view(sz[0] * sz[1], sz[2]), dim=1)
        x = x.view(sz)
        attn_scores = x

        x = self.bmm(x, encoder_out[1])

        # scale attention output (respecting potentially different lengths)
        s = encoder_out[1].size(1)
        if encoder_padding_mask is None:
            x = x * (s * math.sqrt(1.0 / s))
        else:
            s = s - encoder_padding_mask.type_as(x).sum(
                dim=1, keepdim=True
            )  # exclude padding
            s = s.unsqueeze(-1)
            x = x * (s * s.rsqrt())

        # project back
        x = (self.out_projection(x) + residual) * math.sqrt(0.5)
        return x, attn_scores

    def make_generation_fast_(self, beamable_mm_beam_size=None, **kwargs):
        """Replace torch.bmm with BeamableMM."""
        if beamable_mm_beam_size is not None:
            del self.bmm
            self.add_module("bmm", BeamableMM(beamable_mm_beam_size))


class FConvDecoder(FairseqIncrementalDecoder):
    """Convolutional decoder"""

    def __init__(
        self,
        dictionary,
        embed_dim=512,
        embed_dict=None,
        out_embed_dim=256,
        max_positions=1024,
        convolutions=((512, 3),) * 20,
        attention=True,
        dropout=0.1,
        share_embed=False,
        positional_embeddings=True,
        adaptive_softmax_cutoff=None,
        adaptive_softmax_dropout=0.0,
    ):
        super().__init__(dictionary)
        self.register_buffer("version", torch.Tensor([2]))
        self.dropout_module = FairseqDropout(
            dropout, module_name=self.__class__.__name__
        )
        self.need_attn = True

        convolutions = extend_conv_spec(convolutions)
        in_channels = convolutions[0][0]
        if isinstance(attention, bool):
            # expand True into [True, True, ...] and do the same with False
            attention = [attention] * len(convolutions)
        if not isinstance(attention, list) or len(attention) != len(convolutions):
            raise ValueError(
                "Attention is expected to be a list of booleans of "
                "length equal to the number of layers."
            )

        num_embeddings = len(dictionary)
        padding_idx = dictionary.pad()
        self.embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx)
        if embed_dict:
            self.embed_tokens = utils.load_embedding(
                embed_dict, self.dictionary, self.embed_tokens
            )

        self.embed_positions = (
            PositionalEmbedding(
                max_positions,
                embed_dim,
                padding_idx,
            )
            if positional_embeddings
            else None
        )

        self.fc1 = Linear(embed_dim, in_channels, dropout=dropout)
        self.projections = nn.ModuleList()
        self.convolutions = nn.ModuleList()
        self.attention = nn.ModuleList()
        self.residuals = []

        layer_in_channels = [in_channels]
        for i, (out_channels, kernel_size, residual) in enumerate(convolutions):
            if residual == 0:
                residual_dim = out_channels
            else:
                residual_dim = layer_in_channels[-residual]
            self.projections.append(
                Linear(residual_dim, out_channels)
                if residual_dim != out_channels
                else None
            )
            self.convolutions.append(
                LinearizedConv1d(
                    in_channels,
                    out_channels * 2,
                    kernel_size,
                    padding=(kernel_size - 1),
                    dropout=dropout,
                )
            )
            self.attention.append(
                AttentionLayer(out_channels, embed_dim) if attention[i] else None
            )
            self.residuals.append(residual)
            in_channels = out_channels
            layer_in_channels.append(out_channels)

        self.adaptive_softmax = None
        self.fc2 = self.fc3 = None

        if adaptive_softmax_cutoff is not None:
            assert not share_embed
            self.adaptive_softmax = AdaptiveSoftmax(
                num_embeddings,
                in_channels,
                adaptive_softmax_cutoff,
                dropout=adaptive_softmax_dropout,
            )
        else:
            self.fc2 = Linear(in_channels, out_embed_dim)
            if share_embed:
                assert out_embed_dim == embed_dim, (
                    "Shared embed weights implies same dimensions "
                    " out_embed_dim={} vs embed_dim={}".format(out_embed_dim, embed_dim)
                )
                self.fc3 = nn.Linear(out_embed_dim, num_embeddings)
                self.fc3.weight = self.embed_tokens.weight
            else:
                self.fc3 = Linear(out_embed_dim, num_embeddings, dropout=dropout)

    def forward(
        self, prev_output_tokens, encoder_out=None, incremental_state=None, **unused
    ):
        if encoder_out is not None:
            encoder_padding_mask = encoder_out["encoder_padding_mask"]
            encoder_out = encoder_out["encoder_out"]

            # split and transpose encoder outputs
            encoder_a, encoder_b = self._split_encoder_out(
                encoder_out, incremental_state
            )

        if self.embed_positions is not None:
            pos_embed = self.embed_positions(prev_output_tokens, incremental_state)
        else:
            pos_embed = 0

        if incremental_state is not None:
            prev_output_tokens = prev_output_tokens[:, -1:]
        x = self._embed_tokens(prev_output_tokens, incremental_state)

        # embed tokens and combine with positional embeddings
        x += pos_embed
        x = self.dropout_module(x)
        target_embedding = x

        # project to size of convolution
        x = self.fc1(x)

        # B x T x C -> T x B x C
        x = self._transpose_if_training(x, incremental_state)

        # temporal convolutions
        avg_attn_scores = None
        num_attn_layers = len(self.attention)
        residuals = [x]
        for proj, conv, attention, res_layer in zip(
            self.projections, self.convolutions, self.attention, self.residuals
        ):
            if res_layer > 0:
                residual = residuals[-res_layer]
                residual = residual if proj is None else proj(residual)
            else:
                residual = None

            x = self.dropout_module(x)
            x = conv(x, incremental_state)
            x = F.glu(x, dim=2)

            # attention
            if attention is not None:
                x = self._transpose_if_training(x, incremental_state)

                x, attn_scores = attention(
                    x, target_embedding, (encoder_a, encoder_b), encoder_padding_mask
                )

                if not self.training and self.need_attn:
                    attn_scores = attn_scores / num_attn_layers
                    if avg_attn_scores is None:
                        avg_attn_scores = attn_scores
                    else:
                        avg_attn_scores.add_(attn_scores)

                x = self._transpose_if_training(x, incremental_state)

            # residual
            if residual is not None:
                x = (x + residual) * math.sqrt(0.5)
            residuals.append(x)

        # T x B x C -> B x T x C
        x = self._transpose_if_training(x, incremental_state)

        # project back to size of vocabulary if not using adaptive softmax
        if self.fc2 is not None and self.fc3 is not None:
            x = self.fc2(x)
            x = self.dropout_module(x)
            x = self.fc3(x)

        return x, avg_attn_scores

    def reorder_incremental_state(self, incremental_state, new_order):
        super().reorder_incremental_state(incremental_state, new_order)
        encoder_out = utils.get_incremental_state(
            self, incremental_state, "encoder_out"
        )
        if encoder_out is not None:
            encoder_out = tuple(eo.index_select(0, new_order) for eo in encoder_out)
            utils.set_incremental_state(
                self, incremental_state, "encoder_out", encoder_out
            )

    def max_positions(self):
        """Maximum output length supported by the decoder."""
        return (
            self.embed_positions.max_positions
            if self.embed_positions is not None
            else float("inf")
        )

    def upgrade_state_dict(self, state_dict):
        if utils.item(state_dict.get("decoder.version", torch.Tensor([1]))[0]) < 2:
            # old models use incorrect weight norm dimension
            for i, conv in enumerate(self.convolutions):
                # reconfigure weight norm
                nn.utils.remove_weight_norm(conv)
                self.convolutions[i] = nn.utils.weight_norm(conv, dim=0)
            state_dict["decoder.version"] = torch.Tensor([1])
        return state_dict

    def make_generation_fast_(self, need_attn=False, **kwargs):
        self.need_attn = need_attn

    def _embed_tokens(self, tokens, incremental_state):
        if incremental_state is not None:
            # keep only the last token for incremental forward pass
            tokens = tokens[:, -1:]
        return self.embed_tokens(tokens)

    def _split_encoder_out(self, encoder_out, incremental_state):
        """Split and transpose encoder outputs.

        This is cached when doing incremental inference.
        """
        cached_result = utils.get_incremental_state(
            self, incremental_state, "encoder_out"
        )
        if cached_result is not None:
            return cached_result

        # transpose only once to speed up attention layers
        encoder_a, encoder_b = encoder_out
        encoder_a = encoder_a.transpose(1, 2).contiguous()
        result = (encoder_a, encoder_b)

        if incremental_state is not None:
            utils.set_incremental_state(self, incremental_state, "encoder_out", result)
        return result

    def _transpose_if_training(self, x, incremental_state):
        if incremental_state is None:
            x = x.transpose(0, 1)
        return x


def extend_conv_spec(convolutions):
    """
    Extends convolutional spec that is a list of tuples of 2 or 3 parameters
    (kernel size, dim size and optionally how many layers behind to look for residual)
    to default the residual propagation param if it is not specified
    """
    extended = []
    for spec in convolutions:
        if len(spec) == 3:
            extended.append(spec)
        elif len(spec) == 2:
            extended.append(spec + (1,))
        else:
            raise Exception(
                "invalid number of parameters in convolution spec "
                + str(spec)
                + ". expected 2 or 3"
            )
    return tuple(extended)


def Embedding(num_embeddings, embedding_dim, padding_idx):
    m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
    nn.init.normal_(m.weight, 0, 0.1)
    nn.init.constant_(m.weight[padding_idx], 0)
    return m


def PositionalEmbedding(num_embeddings, embedding_dim, padding_idx):
    m = LearnedPositionalEmbedding(num_embeddings, embedding_dim, padding_idx)
    nn.init.normal_(m.weight, 0, 0.1)
    nn.init.constant_(m.weight[padding_idx], 0)
    return m


def Linear(in_features, out_features, dropout=0.0):
    """Weight-normalized Linear layer (input: N x T x C)"""
    m = nn.Linear(in_features, out_features)
    nn.init.normal_(m.weight, mean=0, std=math.sqrt((1 - dropout) / in_features))
    nn.init.constant_(m.bias, 0)
    return nn.utils.weight_norm(m)


def LinearizedConv1d(in_channels, out_channels, kernel_size, dropout=0.0, **kwargs):
    """Weight-normalized Conv1d layer optimized for decoding"""
    m = LinearizedConvolution(in_channels, out_channels, kernel_size, **kwargs)
    std = math.sqrt((4 * (1.0 - dropout)) / (m.kernel_size[0] * in_channels))
    nn.init.normal_(m.weight, mean=0, std=std)
    nn.init.constant_(m.bias, 0)
    return nn.utils.weight_norm(m, dim=2)


def ConvTBC(in_channels, out_channels, kernel_size, dropout=0.0, **kwargs):
    """Weight-normalized Conv1d layer"""
    from fairseq.modules import ConvTBC

    m = ConvTBC(in_channels, out_channels, kernel_size, **kwargs)
    std = math.sqrt((4 * (1.0 - dropout)) / (m.kernel_size[0] * in_channels))
    nn.init.normal_(m.weight, mean=0, std=std)
    nn.init.constant_(m.bias, 0)
    return nn.utils.weight_norm(m, dim=2)


@register_model_architecture("fconv", "fconv")
def base_architecture(args):
    args.dropout = getattr(args, "dropout", 0.1)
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
    args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
    args.encoder_layers = getattr(args, "encoder_layers", "[(512, 3)] * 20")
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
    args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
    args.decoder_layers = getattr(args, "decoder_layers", "[(512, 3)] * 20")
    args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 256)
    args.decoder_attention = getattr(args, "decoder_attention", "True")
    args.share_input_output_embed = getattr(args, "share_input_output_embed", False)


@register_model_architecture("fconv", "fconv_iwslt_de_en")
def fconv_iwslt_de_en(args):
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 256)
    args.encoder_layers = getattr(args, "encoder_layers", "[(256, 3)] * 4")
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 256)
    args.decoder_layers = getattr(args, "decoder_layers", "[(256, 3)] * 3")
    args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 256)
    base_architecture(args)


@register_model_architecture("fconv", "fconv_wmt_en_ro")
def fconv_wmt_en_ro(args):
    args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 512)
    base_architecture(args)


@register_model_architecture("fconv", "fconv_wmt_en_de")
def fconv_wmt_en_de(args):
    convs = "[(512, 3)] * 9"  # first 9 layers have 512 units
    convs += " + [(1024, 3)] * 4"  # next 4 layers have 1024 units
    convs += " + [(2048, 1)] * 2"  # final 2 layers use 1x1 convolutions

    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768)
    args.encoder_layers = getattr(args, "encoder_layers", convs)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 768)
    args.decoder_layers = getattr(args, "decoder_layers", convs)
    args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 512)
    base_architecture(args)


@register_model_architecture("fconv", "fconv_wmt_en_fr")
def fconv_wmt_en_fr(args):
    convs = "[(512, 3)] * 6"  # first 6 layers have 512 units
    convs += " + [(768, 3)] * 4"  # next 4 layers have 768 units
    convs += " + [(1024, 3)] * 3"  # next 3 layers have 1024 units
    convs += " + [(2048, 1)] * 1"  # next 1 layer uses 1x1 convolutions
    convs += " + [(4096, 1)] * 1"  # final 1 layer uses 1x1 convolutions

    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768)
    args.encoder_layers = getattr(args, "encoder_layers", convs)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 768)
    args.decoder_layers = getattr(args, "decoder_layers", convs)
    args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 512)
    base_architecture(args)