File size: 25,347 Bytes
6a62ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import logging
import math
import os

import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import checkpoint_utils
from fairseq.incremental_decoding_utils import with_incremental_state
from fairseq.models import (
    CompositeEncoder,
    FairseqDecoder,
    FairseqEncoder,
    FairseqEncoderDecoderModel,
    register_model,
    register_model_architecture,
)
from fairseq.modules import (
    DownsampledMultiHeadAttention,
    FairseqDropout,
    GradMultiply,
    LayerNorm,
    LearnedPositionalEmbedding,
    LinearizedConvolution,
)


logger = logging.getLogger(__name__)


@register_model("fconv_self_att")
class FConvModelSelfAtt(FairseqEncoderDecoderModel):
    @classmethod
    def hub_models(cls):
        return {
            "conv.stories.pretrained": {
                "path": "https://dl.fbaipublicfiles.com/fairseq/models/stories_checkpoint.tar.gz",
                "checkpoint_file": "pretrained_checkpoint.pt",
                "tokenizer": "nltk",
            },
            "conv.stories": {
                "path": "https://dl.fbaipublicfiles.com/fairseq/models/stories_checkpoint.tar.gz",
                "checkpoint_file": "fusion_checkpoint.pt",
                "tokenizer": "nltk",
                "pretrained": "True",
                "pretrained_checkpoint": "./pretrained_checkpoint.pt",
            },
            # Test set containing dictionaries
            "data.stories": "https://dl.fbaipublicfiles.com/fairseq/data/stories_test.tar.bz2",
        }

    def __init__(self, encoder, decoder, pretrained_encoder=None):
        super().__init__(encoder, decoder)
        self.encoder.num_attention_layers = sum(
            layer is not None for layer in decoder.attention
        )
        self.pretrained_encoder = pretrained_encoder
        if self.pretrained_encoder is None:
            encoders = {"encoder": encoder}
        else:
            encoders = {"encoder": encoder, "pretrained": self.pretrained_encoder}
        # for fusion model, CompositeEncoder contains both pretrained and training encoders
        # these are forwarded and then combined in the decoder
        self.encoder = CompositeEncoder(encoders)

    @staticmethod
    def add_args(parser):
        """Add model-specific arguments to the parser."""
        # fmt: off
        parser.add_argument('--dropout', type=float, metavar='D',
                            help='dropout probability')
        parser.add_argument('--encoder-embed-dim', type=int, metavar='N',
                            help='encoder embedding dimension')
        parser.add_argument('--encoder-layers', type=str, metavar='EXPR',
                            help='encoder layers [(dim, kernel_size), ...]')
        parser.add_argument('--decoder-embed-dim', type=int, metavar='N',
                            help='decoder embedding dimension')
        parser.add_argument('--decoder-layers', type=str, metavar='EXPR',
                            help='decoder layers [(dim, kernel_size), ...]')
        parser.add_argument('--decoder-out-embed-dim', type=int, metavar='N',
                            help='decoder output embedding dimension')
        parser.add_argument('--decoder-attention', type=str, metavar='EXPR',
                            help='decoder attention [True, ...]')
        parser.add_argument('--self-attention', type=str, metavar='EXPR',
                            help='decoder self-attention layers, ex: [True] + [False]*5')
        parser.add_argument('--multihead-attention-nheads', type=int,
                            help='Number of heads to use in attention')
        parser.add_argument('--multihead-self-attention-nheads', type=int,
                            help='Number of heads to use in self-attention')
        parser.add_argument('--encoder-attention', type=str, metavar='EXPR',
                            help='encoder attention [True, ...]')
        parser.add_argument('--encoder-attention-nheads', type=int,
                            help='Number of heads to use in encoder attention')
        parser.add_argument('--project-input', type=str, metavar='EXPR',
                            help='Use projections in self-attention [True, ...]')
        parser.add_argument('--gated-attention', type=str, metavar='EXPR',
                            help='Use GLU layers in self-attention projections [True, ...]')
        parser.add_argument('--downsample', type=str, metavar='EXPR',
                            help='Use downsampling in self-attention [True, ...]')
        parser.add_argument('--pretrained-checkpoint', metavar='DIR',
                            help='path to load checkpoint from pretrained model')
        parser.add_argument('--pretrained', type=str, metavar='EXPR',
                            help='use pretrained model when training [True, ...]')
        # fmt: on

    @classmethod
    def build_model(cls, args, task):
        """Build a new model instance."""
        trained_encoder, trained_decoder = None, None
        pretrained = eval(args.pretrained)
        if pretrained:
            logger.info("loading pretrained model")
            if not os.path.exists(args.pretrained_checkpoint):
                new_pretrained_checkpoint = os.path.join(
                    args.data, args.pretrained_checkpoint
                )
                if os.path.exists(new_pretrained_checkpoint):
                    args.pretrained_checkpoint = new_pretrained_checkpoint
            trained_model = checkpoint_utils.load_model_ensemble(
                filenames=[args.pretrained_checkpoint],
                task=task,
            )[0][0]
            trained_decoder = list(trained_model.children())[1]
            trained_encoder = list(trained_model.children())[0]

            # freeze pretrained model
            for param in trained_decoder.parameters():
                param.requires_grad = False
            for param in trained_encoder.parameters():
                param.requires_grad = False

        encoder = FConvEncoder(
            task.source_dictionary,
            embed_dim=args.encoder_embed_dim,
            convolutions=eval(args.encoder_layers),
            dropout=args.dropout,
            max_positions=args.max_source_positions,
            attention=eval(args.encoder_attention),
            attention_nheads=args.encoder_attention_nheads,
        )

        decoder = FConvDecoder(
            task.target_dictionary,
            embed_dim=args.decoder_embed_dim,
            convolutions=eval(args.decoder_layers),
            out_embed_dim=args.decoder_out_embed_dim,
            attention=eval(args.decoder_attention),
            dropout=args.dropout,
            max_positions=args.max_target_positions,
            selfattention=eval(args.self_attention),
            attention_nheads=args.multihead_attention_nheads,
            selfattention_nheads=args.multihead_self_attention_nheads,
            project_input=eval(args.project_input),
            gated_attention=eval(args.gated_attention),
            downsample=eval(args.downsample),
            pretrained=pretrained,
            trained_decoder=trained_decoder,
        )
        model = FConvModelSelfAtt(encoder, decoder, trained_encoder)

        return model

    @property
    def pretrained(self):
        return self.pretrained_encoder is not None


class FConvEncoder(FairseqEncoder):
    """Convolutional encoder"""

    def __init__(
        self,
        dictionary,
        embed_dim=512,
        max_positions=1024,
        convolutions=((512, 3),) * 20,
        dropout=0.1,
        attention=False,
        attention_nheads=1,
    ):
        super().__init__(dictionary)
        self.dropout_module = FairseqDropout(
            dropout, module_name=self.__class__.__name__
        )
        self.num_attention_layers = None

        num_embeddings = len(dictionary)
        self.padding_idx = dictionary.pad()
        self.embed_tokens = Embedding(num_embeddings, embed_dim, self.padding_idx)
        self.embed_positions = PositionalEmbedding(
            max_positions,
            embed_dim,
            self.padding_idx,
        )

        def expand_bool_array(val):
            if isinstance(val, bool):
                # expand True into [True, True, ...] and do the same with False
                return [val] * len(convolutions)
            return val

        attention = expand_bool_array(attention)

        in_channels = convolutions[0][0]
        self.fc1 = Linear(embed_dim, in_channels, dropout=dropout)
        self.projections = nn.ModuleList()
        self.convolutions = nn.ModuleList()
        self.attention = nn.ModuleList()
        self.attproj = nn.ModuleList()
        for i, (out_channels, kernel_size) in enumerate(convolutions):
            self.projections.append(
                Linear(in_channels, out_channels)
                if in_channels != out_channels
                else None
            )
            self.convolutions.append(
                ConvTBC(in_channels, out_channels * 2, kernel_size, dropout=dropout)
            )

            self.attention.append(
                SelfAttention(out_channels, embed_dim, attention_nheads)
                if attention[i]
                else None
            )
            in_channels = out_channels

        self.fc2 = Linear(in_channels, embed_dim)

    def forward(self, src_tokens, src_lengths):
        # embed tokens and positions
        x = self.embed_tokens(src_tokens) + self.embed_positions(src_tokens)
        x = self.dropout_module(x)
        input_embedding = x.transpose(0, 1)

        # project to size of convolution
        x = self.fc1(x)

        encoder_padding_mask = src_tokens.eq(self.padding_idx).t()  # -> T x B
        if not encoder_padding_mask.any():
            encoder_padding_mask = None

        # B x T x C -> T x B x C
        x = x.transpose(0, 1)

        # temporal convolutions
        for proj, conv, attention in zip(
            self.projections, self.convolutions, self.attention
        ):
            residual = x if proj is None else proj(x)

            if encoder_padding_mask is not None:
                x = x.masked_fill(encoder_padding_mask.unsqueeze(-1), 0)

            x = self.dropout_module(x)
            padding_l = (conv.kernel_size[0] - 1) // 2
            padding_r = conv.kernel_size[0] // 2
            x = F.pad(x, (0, 0, 0, 0, padding_l, padding_r))
            x = conv(x)
            x = F.glu(x, dim=2)
            if attention is not None:
                x = attention(x)
            x = (x + residual) * math.sqrt(0.5)

        # T x B x C -> B x T x C
        x = x.transpose(1, 0)

        # project back to size of embedding
        x = self.fc2(x)

        if encoder_padding_mask is not None:
            encoder_padding_mask = encoder_padding_mask.t()  # -> B x T
            x = x.masked_fill(encoder_padding_mask.unsqueeze(-1), 0)

        # scale gradients (this only affects backward, not forward)
        x = GradMultiply.apply(x, 1.0 / (2.0 * self.num_attention_layers))

        # add output to input embedding for attention
        y = (x + input_embedding.transpose(0, 1)) * math.sqrt(0.5)

        return {
            "encoder_out": (x, y),
            "encoder_padding_mask": encoder_padding_mask,  # B x T
        }

    def reorder_encoder_out(self, encoder_out, new_order):
        encoder_out["encoder_out"] = tuple(
            eo.index_select(0, new_order) for eo in encoder_out["encoder_out"]
        )

        if encoder_out["encoder_padding_mask"] is not None:
            encoder_out["encoder_padding_mask"] = encoder_out[
                "encoder_padding_mask"
            ].index_select(0, new_order)

        if "pretrained" in encoder_out:
            encoder_out["pretrained"]["encoder_out"] = tuple(
                eo.index_select(0, new_order)
                for eo in encoder_out["pretrained"]["encoder_out"]
            )

        return encoder_out

    def max_positions(self):
        """Maximum input length supported by the encoder."""
        return self.embed_positions.max_positions


@with_incremental_state
class FConvDecoder(FairseqDecoder):
    """Convolutional decoder"""

    def __init__(
        self,
        dictionary,
        embed_dim=512,
        out_embed_dim=256,
        max_positions=1024,
        convolutions=((512, 3),) * 8,
        attention=True,
        dropout=0.1,
        selfattention=False,
        attention_nheads=1,
        selfattention_nheads=1,
        project_input=False,
        gated_attention=False,
        downsample=False,
        pretrained=False,
        trained_decoder=None,
    ):
        super().__init__(dictionary)
        self.register_buffer("version", torch.Tensor([2]))
        self.pretrained = pretrained
        self.pretrained_decoder = trained_decoder
        self.dropout_module = FairseqDropout(
            dropout, module_name=self.__class__.__name__
        )
        self.need_attn = True
        in_channels = convolutions[0][0]

        def expand_bool_array(val):
            if isinstance(val, bool):
                # expand True into [True, True, ...] and do the same with False
                return [val] * len(convolutions)
            return val

        attention = expand_bool_array(attention)
        selfattention = expand_bool_array(selfattention)

        if not isinstance(attention, list) or len(attention) != len(convolutions):
            raise ValueError(
                "Attention is expected to be a list of booleans of "
                "length equal to the number of layers."
            )

        num_embeddings = len(dictionary)
        padding_idx = dictionary.pad()
        self.embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx)

        self.embed_positions = PositionalEmbedding(
            max_positions,
            embed_dim,
            padding_idx,
        )

        self.fc1 = Linear(embed_dim, in_channels, dropout=dropout)
        self.projections = nn.ModuleList()
        self.convolutions = nn.ModuleList()
        self.attention = nn.ModuleList()
        self.selfattention = nn.ModuleList()
        self.attproj = nn.ModuleList()
        for i, (out_channels, kernel_size) in enumerate(convolutions):
            self.projections.append(
                Linear(in_channels, out_channels)
                if in_channels != out_channels
                else None
            )
            self.convolutions.append(
                LinearizedConv1d(
                    in_channels,
                    out_channels * 2,
                    kernel_size,
                    padding=(kernel_size - 1),
                    dropout=dropout,
                )
            )

            self.attention.append(
                DownsampledMultiHeadAttention(
                    out_channels,
                    embed_dim,
                    attention_nheads,
                    project_input=project_input,
                    gated=False,
                    downsample=False,
                )
                if attention[i]
                else None
            )

            self.attproj.append(
                Linear(out_channels, embed_dim, dropout=dropout)
                if attention[i]
                else None
            )
            self.selfattention.append(
                SelfAttention(
                    out_channels,
                    embed_dim,
                    selfattention_nheads,
                    project_input=project_input,
                    gated=gated_attention,
                    downsample=downsample,
                )
                if selfattention[i]
                else None
            )
            in_channels = out_channels

        self.fc2 = Linear(in_channels, out_embed_dim)
        self.fc3 = Linear(out_embed_dim, num_embeddings, dropout=dropout)

        # model fusion
        if self.pretrained:
            # independent gates are learned from the concatenated input
            self.gate1 = nn.Sequential(
                Linear(out_embed_dim * 2, out_embed_dim), nn.Sigmoid()
            )
            self.gate2 = nn.Sequential(
                Linear(out_embed_dim * 2, out_embed_dim), nn.Sigmoid()
            )
            # pretrained and trained models are joined
            self.joining = nn.Sequential(
                Linear(out_embed_dim * 2, out_embed_dim * 2),
                LayerNorm(out_embed_dim * 2),
                nn.GLU(),
                Linear(out_embed_dim, out_embed_dim * 2),
                LayerNorm(out_embed_dim * 2),
                nn.GLU(),
                Linear(out_embed_dim, out_embed_dim),
                LayerNorm(out_embed_dim),
            )
            # pretrained model contains an output layer that is nhid -> vocab size
            # but the models are combined in their hidden state
            # the hook stores the output of the pretrained model forward
            self.pretrained_outputs = {}

            def save_output():
                def hook(a, b, output):
                    self.pretrained_outputs["out"] = output

                return hook

            self.pretrained_decoder.fc2.register_forward_hook(save_output())

    def forward(self, prev_output_tokens, encoder_out):
        trained_encoder_out = encoder_out["pretrained"] if self.pretrained else None
        encoder_out = encoder_out["encoder"]["encoder_out"]

        encoder_a, encoder_b = self._split_encoder_out(encoder_out)

        # embed positions
        positions = self.embed_positions(prev_output_tokens)

        # embed tokens and positions
        x = self.embed_tokens(prev_output_tokens) + positions
        x = self.dropout_module(x)
        target_embedding = x.transpose(0, 1)

        # project to size of convolution
        x = self.fc1(x)

        # B x T x C -> T x B x C
        x = x.transpose(0, 1)

        # temporal convolutions
        avg_attn_scores = None
        for proj, conv, attention, selfattention, attproj in zip(
            self.projections,
            self.convolutions,
            self.attention,
            self.selfattention,
            self.attproj,
        ):
            residual = x if proj is None else proj(x)

            x = self.dropout_module(x)
            x = conv(x)
            x = F.glu(x, dim=2)

            # attention
            if attention is not None:
                r = x
                x, attn_scores = attention(
                    attproj(x) + target_embedding, encoder_a, encoder_b
                )
                x = x + r
                if not self.training and self.need_attn:
                    if avg_attn_scores is None:
                        avg_attn_scores = attn_scores
                    else:
                        avg_attn_scores.add_(attn_scores)

            if selfattention is not None:
                x = selfattention(x)

            x = (x + residual) * math.sqrt(0.5)

        # T x B x C -> B x T x C
        x = x.transpose(0, 1)

        # project back to size of vocabulary
        x = self.fc2(x)
        x = self.dropout_module(x)
        if not self.pretrained:
            x = self.fc3(x)

        # fusion gating
        if self.pretrained:
            trained_x, _ = self.pretrained_decoder.forward(
                prev_output_tokens, trained_encoder_out
            )
            y = torch.cat([x, self.pretrained_outputs["out"]], dim=-1)
            gate1 = self.gate1(y)
            gate2 = self.gate2(y)
            gated_x1 = gate1 * x
            gated_x2 = gate2 * self.pretrained_outputs["out"]
            fusion = torch.cat([gated_x1, gated_x2], dim=-1)
            fusion = self.joining(fusion)
            fusion_output = self.fc3(fusion)
            return fusion_output, avg_attn_scores
        else:
            return x, avg_attn_scores

    def max_positions(self):
        """Maximum output length supported by the decoder."""
        return self.embed_positions.max_positions

    def make_generation_fast_(self, need_attn=False, **kwargs):
        self.need_attn = need_attn

    def _split_encoder_out(self, encoder_out):
        """Split and transpose encoder outputs."""
        # transpose only once to speed up attention layers
        encoder_a, encoder_b = encoder_out
        encoder_a = encoder_a.transpose(0, 1).contiguous()
        encoder_b = encoder_b.transpose(0, 1).contiguous()
        result = (encoder_a, encoder_b)
        return result


class SelfAttention(nn.Module):
    def __init__(
        self,
        out_channels,
        embed_dim,
        num_heads,
        project_input=False,
        gated=False,
        downsample=False,
    ):
        super().__init__()
        self.attention = DownsampledMultiHeadAttention(
            out_channels,
            embed_dim,
            num_heads,
            dropout=0,
            bias=True,
            project_input=project_input,
            gated=gated,
            downsample=downsample,
        )
        self.in_proj_q = Linear(out_channels, embed_dim)
        self.in_proj_k = Linear(out_channels, embed_dim)
        self.in_proj_v = Linear(out_channels, embed_dim)
        self.ln = LayerNorm(out_channels)

    def forward(self, x):
        residual = x
        query = self.in_proj_q(x)
        key = self.in_proj_k(x)
        value = self.in_proj_v(x)
        x, _ = self.attention(
            query, key, value, mask_future_timesteps=True, use_scalar_bias=True
        )
        return self.ln(x + residual)


def Embedding(num_embeddings, embedding_dim, padding_idx):
    m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
    m.weight.data.normal_(0, 0.1)
    return m


def PositionalEmbedding(num_embeddings, embedding_dim, padding_idx):
    m = LearnedPositionalEmbedding(num_embeddings, embedding_dim, padding_idx)
    m.weight.data.normal_(0, 0.1)
    return m


def Linear(in_features, out_features, dropout=0.0):
    """Weight-normalized Linear layer (input: N x T x C)"""
    m = nn.Linear(in_features, out_features)
    m.weight.data.normal_(mean=0, std=math.sqrt((1 - dropout) / in_features))
    m.bias.data.zero_()
    return m


def LinearizedConv1d(in_channels, out_channels, kernel_size, dropout=0.0, **kwargs):
    """Weight-normalized Conv1d layer optimized for decoding"""
    m = LinearizedConvolution(in_channels, out_channels, kernel_size, **kwargs)
    std = math.sqrt((4 * (1.0 - dropout)) / (m.kernel_size[0] * in_channels))
    m.weight.data.normal_(mean=0, std=std)
    m.bias.data.zero_()
    return m


def ConvTBC(in_channels, out_channels, kernel_size, dropout=0.0, **kwargs):
    """Weight-normalized Conv1d layer"""
    from fairseq.modules import ConvTBC

    m = ConvTBC(in_channels, out_channels, kernel_size, **kwargs)
    std = math.sqrt((4 * (1.0 - dropout)) / (m.kernel_size[0] * in_channels))
    m.weight.data.normal_(mean=0, std=std)
    m.bias.data.zero_()
    return m


@register_model_architecture("fconv_self_att", "fconv_self_att")
def base_architecture(args):
    args.dropout = getattr(args, "dropout", 0.1)
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
    args.encoder_layers = getattr(args, "encoder_layers", "[(512, 3)] * 3")
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
    args.decoder_layers = getattr(args, "decoder_layers", "[(512, 3)] * 8")
    args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 256)
    args.decoder_attention = getattr(args, "decoder_attention", "True")
    args.self_attention = getattr(args, "self_attention", "False")
    args.encoder_attention = getattr(args, "encoder_attention", "False")
    args.multihead_attention_nheads = getattr(args, "multihead_attention_nheads", 1)
    args.multihead_self_attention_nheads = getattr(
        args, "multihead_self_attention_nheads", 1
    )
    args.encoder_attention_nheads = getattr(args, "encoder_attention_nheads", 1)
    args.project_input = getattr(args, "project_input", "False")
    args.gated_attention = getattr(args, "gated_attention", "False")
    args.downsample = getattr(args, "downsample", "False")
    args.pretrained_checkpoint = getattr(args, "pretrained_checkpoint", "")
    args.pretrained = getattr(args, "pretrained", "False")


@register_model_architecture("fconv_self_att", "fconv_self_att_wp")
def fconv_self_att_wp(args):
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 256)
    args.encoder_layers = getattr(
        args, "encoder_layers", "[(128, 3)] * 2 + [(512,3)] * 1"
    )
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 256)
    args.decoder_layers = getattr(
        args, "decoder_layers", "[(512, 4)] * 4 + [(768, 4)] * 2 + [(1024, 4)] * 1"
    )
    args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 256)
    args.self_attention = getattr(args, "self_attention", "True")
    args.multihead_self_attention_nheads = getattr(
        args, "multihead_self_attention_nheads", 4
    )
    args.project_input = getattr(args, "project_input", "True")
    args.gated_attention = getattr(args, "gated_attention", "True")
    args.downsample = getattr(args, "downsample", "True")
    base_architecture(args)