File size: 42,519 Bytes
6a62ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from typing import Any, Dict, List, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import utils
from fairseq.models import (
FairseqEncoder,
FairseqEncoderDecoderModel,
FairseqIncrementalDecoder,
register_model,
register_model_architecture,
)
from fairseq.modules import (
AdaptiveSoftmax,
DynamicConv_scripatable as DynamicConv,
FairseqDropout,
LayerNorm,
LightweightConv,
MultiheadAttention,
PositionalEmbedding,
)
from fairseq.utils import safe_hasattr
from torch import Tensor
@register_model("lightconv")
class LightConvModel(FairseqEncoderDecoderModel):
"""
LightConv and DynamicConv model from `"Pay Less Attention with Lightweight and Dynamic Convolutions" (Wu, et al, 2019)
<https://openreview.net/pdf?id=SkVhlh09tX>`_.
To use LightConv please set ``--encoder-conv-type lightweight --decoder-conv-type lightweight``
To use DynamicConv please set ``--encoder-conv-type dynamic --decoder-conv-type dynamic``
Args:
encoder (LightConvEncoder): the encoder
decoder (LightConvDecoder): the decoder
The LightConv model provides the following named architectures and
command-line arguments:
.. argparse::
:ref: fairseq.models.lightconv_parser
:prog:
"""
@classmethod
def hub_models(cls):
# fmt: off
def moses_subword(path):
return {
'path': path,
'tokenizer': 'moses',
'bpe': 'subword_nmt',
}
return {
'lightconv.no_glu.iwslt14.de-en': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/iwslt14.de-en.lightconv.tar.gz'),
'dynamicconv.no_glu.iwslt14.de-en': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/iwslt14.de-en.dynamicconv.tar.gz'),
'lightconv.no_glu.wmt16.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.lightconv.tar.gz'),
'dynamicconv.no_glu.wmt16.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.dynamicconv.tar.gz'),
'lightconv.glu.wmt16.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.lightconv-glu.tar.gz'),
'dynamicconv.glu.wmt16.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.dynamicconv-glu.tar.gz'),
'lightconv.glu.wmt17.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.lightconv-glu.tar.gz'),
'dynamicconv.glu.wmt17.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.dynamicconv-glu.tar.gz'),
'lightconv.glu.wmt14.en-fr': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt14.en-fr.joined-dict.lightconv-glu.tar.gz'),
'dynamicconv.glu.wmt14.en-fr': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt14.en-fr.joined-dict.dynamicconv-glu.tar.gz'),
'lightconv.glu.wmt17.zh-en': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt17.zh-en.lightconv-glu.tar.gz'),
'dynamicconv.glu.wmt17.zh-en': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt17.zh-en.dynamicconv-glu.tar.gz'),
}
# fmt: on
def __init__(self, encoder, decoder):
super().__init__(encoder, decoder)
@staticmethod
def add_args(parser):
"""Add model-specific arguments to the parser."""
parser.add_argument(
"--dropout", type=float, metavar="D", help="dropout probability"
)
parser.add_argument(
"--attention-dropout",
type=float,
metavar="D",
help="dropout probability for attention weights",
)
parser.add_argument(
"--relu-dropout",
type=float,
metavar="D",
help="dropout probability after ReLU in FFN",
)
parser.add_argument(
"--input-dropout",
type=float,
metavar="D",
help="dropout probability of the inputs",
)
parser.add_argument(
"--encoder-embed-path",
type=str,
metavar="STR",
help="path to pre-trained encoder embedding",
)
parser.add_argument(
"--encoder-embed-dim",
type=int,
metavar="N",
help="encoder embedding dimension",
)
parser.add_argument(
"--encoder-conv-dim",
type=int,
metavar="N",
help="encoder embedding dimension",
)
parser.add_argument(
"--encoder-ffn-embed-dim",
type=int,
metavar="N",
help="encoder embedding dimension for FFN",
)
parser.add_argument(
"--encoder-layers", type=int, metavar="N", help="num encoder layers"
)
parser.add_argument(
"--encoder-attention-heads",
type=int,
metavar="N",
help="num encoder attention heads or LightConv/DynamicConv heads",
)
parser.add_argument(
"--encoder-normalize-before",
action="store_true",
help="apply layernorm before each encoder block",
)
parser.add_argument(
"--encoder-learned-pos",
action="store_true",
help="use learned positional embeddings in the encoder",
)
parser.add_argument(
"--decoder-embed-path",
type=str,
metavar="STR",
help="path to pre-trained decoder embedding",
)
parser.add_argument(
"--decoder-embed-dim",
type=int,
metavar="N",
help="decoder embedding dimension",
)
parser.add_argument(
"--decoder-conv-dim",
type=int,
metavar="N",
help="decoder embedding dimension",
)
parser.add_argument(
"--decoder-ffn-embed-dim",
type=int,
metavar="N",
help="decoder embedding dimension for FFN",
)
parser.add_argument(
"--decoder-layers", type=int, metavar="N", help="num decoder layers"
)
parser.add_argument(
"--decoder-attention-heads",
type=int,
metavar="N",
help="num decoder attention heads or LightConv/DynamicConv heads",
)
parser.add_argument(
"--decoder-learned-pos",
action="store_true",
help="use learned positional embeddings in the decoder",
)
parser.add_argument(
"--decoder-normalize-before",
action="store_true",
help="apply layernorm before each decoder block",
)
parser.add_argument(
"--share-decoder-input-output-embed",
action="store_true",
help="share decoder input and output embeddings",
)
parser.add_argument(
"--share-all-embeddings",
action="store_true",
help="share encoder, decoder and output embeddings"
" (requires shared dictionary and embed dim)",
)
parser.add_argument(
"--adaptive-softmax-cutoff",
metavar="EXPR",
help="comma separated list of adaptive softmax cutoff points. "
"Must be used with adaptive_loss criterion",
),
parser.add_argument(
"--adaptive-softmax-dropout",
type=float,
metavar="D",
help="sets adaptive softmax dropout for the tail projections",
)
"""LightConv and DynamicConv arguments"""
parser.add_argument(
"--encoder-kernel-size-list",
type=lambda x: utils.eval_str_list(x, int),
help='list of kernel size (default: "[3,7,15,31,31,31,31]")',
)
parser.add_argument(
"--decoder-kernel-size-list",
type=lambda x: utils.eval_str_list(x, int),
help='list of kernel size (default: "[3,7,15,31,31,31]")',
)
parser.add_argument(
"--encoder-glu", type=utils.eval_bool, help="glu after in proj"
)
parser.add_argument(
"--decoder-glu", type=utils.eval_bool, help="glu after in proj"
)
parser.add_argument(
"--encoder-conv-type",
default="dynamic",
type=str,
choices=["dynamic", "lightweight"],
help="type of convolution",
)
parser.add_argument(
"--decoder-conv-type",
default="dynamic",
type=str,
choices=["dynamic", "lightweight"],
help="type of convolution",
)
parser.add_argument("--weight-softmax", default=True, type=utils.eval_bool)
parser.add_argument(
"--weight-dropout",
type=float,
metavar="D",
help="dropout probability for conv weights",
)
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
# make sure all arguments are present in older models
base_architecture(args)
if not safe_hasattr(args, "max_source_positions"):
args.max_source_positions = 1024
if not safe_hasattr(args, "max_target_positions"):
args.max_target_positions = 1024
src_dict, tgt_dict = task.source_dictionary, task.target_dictionary
def build_embedding(dictionary, embed_dim, path=None):
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
emb = Embedding(num_embeddings, embed_dim, padding_idx)
# if provided, load from preloaded dictionaries
if path:
embed_dict = utils.parse_embedding(path)
utils.load_embedding(embed_dict, dictionary, emb)
return emb
if args.share_all_embeddings:
if src_dict != tgt_dict:
raise RuntimeError(
"--share-all-embeddings requires a joined dictionary"
)
if args.encoder_embed_dim != args.decoder_embed_dim:
raise RuntimeError(
"--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim"
)
if args.decoder_embed_path and (
args.decoder_embed_path != args.encoder_embed_path
):
raise RuntimeError(
"--share-all-embeddings not compatible with --decoder-embed-path"
)
encoder_embed_tokens = build_embedding(
src_dict, args.encoder_embed_dim, args.encoder_embed_path
)
decoder_embed_tokens = encoder_embed_tokens
args.share_decoder_input_output_embed = True
else:
encoder_embed_tokens = build_embedding(
src_dict, args.encoder_embed_dim, args.encoder_embed_path
)
decoder_embed_tokens = build_embedding(
tgt_dict, args.decoder_embed_dim, args.decoder_embed_path
)
encoder = LightConvEncoder(args, src_dict, encoder_embed_tokens)
decoder = LightConvDecoder(args, tgt_dict, decoder_embed_tokens)
return LightConvModel(encoder, decoder)
def forward(
self,
src_tokens: Tensor,
src_lengths: Tensor,
prev_output_tokens: Tensor,
):
"""
(The forward method inherited from the base class has a **kwargs
argument in its input, which is not supported in torchscript. This
method overwrites the forward method definition without **kwargs.)
Run the forward pass for an encoder-decoder model.
First feed a batch of source tokens through the encoder. Then, feed the
encoder output and previous decoder outputs (i.e., teacher forcing) to
the decoder to produce the next outputs::
encoder_out = self.encoder(src_tokens, src_lengths)
return self.decoder(prev_output_tokens, encoder_out)
Args:
src_tokens (LongTensor): tokens in the source language of shape
`(batch, src_len)`
src_lengths (LongTensor): source sentence lengths of shape `(batch)`
prev_output_tokens (LongTensor): previous decoder outputs of shape
`(batch, tgt_len)`, for teacher forcing
Returns:
tuple:
- the decoder's output of shape `(batch, tgt_len, vocab)`
- a dictionary with any model-specific outputs
"""
encoder_out = self.encoder(src_tokens, src_lengths)
decoder_out = self.decoder(prev_output_tokens, encoder_out=encoder_out)
return decoder_out
class LightConvEncoder(FairseqEncoder):
"""
LightConv encoder consisting of *args.encoder_layers* layers. Each layer
is a :class:`LightConvEncoderLayer`.
Args:
args (argparse.Namespace): parsed command-line arguments
dictionary (~fairseq.data.Dictionary): encoding dictionary
embed_tokens (torch.nn.Embedding): input embedding
"""
def __init__(self, args, dictionary, embed_tokens):
super().__init__(dictionary)
self.dropout_module = FairseqDropout(
args.dropout, module_name=self.__class__.__name__
)
embed_dim = embed_tokens.embedding_dim
self.padding_idx = embed_tokens.padding_idx
self.max_source_positions = args.max_source_positions
self.embed_tokens = embed_tokens
self.embed_scale = math.sqrt(embed_dim)
self.embed_positions = (
PositionalEmbedding(
args.max_source_positions,
embed_dim,
self.padding_idx,
learned=args.encoder_learned_pos,
)
if not args.no_token_positional_embeddings
else None
)
self.layers = nn.ModuleList([])
self.layers.extend(
[
LightConvEncoderLayer(
args, kernel_size=args.encoder_kernel_size_list[i]
)
for i in range(args.encoder_layers)
]
)
self.register_buffer("version", torch.Tensor([2]))
self.normalize = args.encoder_normalize_before
if self.normalize:
self.layer_norm = LayerNorm(embed_dim)
else:
self.layer_norm = None
def forward(
self, src_tokens: Tensor, src_lengths: Optional[Tensor] = None
) -> Dict[str, List[Tensor]]:
"""
Args:
src_tokens (LongTensor): tokens in the source language of shape
`(batch, src_len)`
Returns:
dict:
- **encoder_out** (Tensor): the last encoder layer's output of
shape `(src_len, batch, embed_dim)`
- **encoder_padding_mask** (ByteTensor): the positions of
padding elements of shape `(batch, src_len)`
"""
# embed tokens and positions
x = self.embed_scale * self.embed_tokens(src_tokens)
if self.embed_positions is not None:
x += self.embed_positions(src_tokens)
x = self.dropout_module(x)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
# compute padding mask
encoder_padding_mask = src_tokens.eq(self.padding_idx) # B x T
if not encoder_padding_mask.any():
encoder_mask = None
else:
encoder_mask = encoder_padding_mask
# encoder layers
for layer in self.layers:
x = layer(x, encoder_mask)
if self.layer_norm is not None:
x = self.layer_norm(x)
output_dict: Dict[str, List[Tensor]] = {}
if src_lengths is not None:
output_dict["src_lengths"] = [src_lengths]
output_dict["encoder_out"] = [x] # T x B x C
if encoder_mask is not None:
output_dict["encoder_padding_mask"] = [encoder_mask] # B x T
return output_dict
@torch.jit.export
def reorder_encoder_out(
self, encoder_out: Dict[str, List[Tensor]], new_order: Tensor
):
"""
Reorder encoder output according to *new_order*.
Args:
encoder_out: output from the ``forward()`` method
new_order (LongTensor): desired order
Returns:
*encoder_out* rearranged according to *new_order*
"""
if len(encoder_out["encoder_out"]) == 0:
encoder = []
else:
encoder = [encoder_out["encoder_out"][0].index_select(1, new_order)]
output_dict = {"encoder_out": encoder}
if ("encoder_padding_mask" not in encoder_out) or (
len(encoder_out["encoder_padding_mask"]) == 0
):
encoder_padding_mask = []
else:
encoder_padding_mask = [
encoder_out["encoder_padding_mask"][0].index_select(0, new_order)
]
output_dict["encoder_padding_mask"] = encoder_padding_mask
return output_dict
def max_positions(self):
"""Maximum input length supported by the encoder."""
if self.embed_positions is None:
return self.max_source_positions
return min(self.max_source_positions, self.embed_positions.max_positions)
class LightConvDecoder(FairseqIncrementalDecoder):
"""
LightConv decoder consisting of *args.decoder_layers* layers. Each layer
is a :class:`LightConvDecoderLayer`.
Args:
args (argparse.Namespace): parsed command-line arguments
dictionary (~fairseq.data.Dictionary): decoding dictionary
embed_tokens (torch.nn.Embedding): output embedding
no_encoder_attn (bool, optional): whether to attend to encoder outputs.
Default: ``False``
"""
def __init__(
self, args, dictionary, embed_tokens, no_encoder_attn=False, final_norm=True
):
super().__init__(dictionary)
self.dropout_module = FairseqDropout(
args.dropout, module_name=self.__class__.__name__
)
self.share_input_output_embed = args.share_decoder_input_output_embed
input_embed_dim = embed_tokens.embedding_dim
embed_dim = args.decoder_embed_dim
output_embed_dim = args.decoder_output_dim
padding_idx = embed_tokens.padding_idx
self.max_target_positions = args.max_target_positions
self.embed_tokens = embed_tokens
self.embed_scale = math.sqrt(embed_dim) # todo: try with input_embed_dim
self.project_in_dim = (
Linear(input_embed_dim, embed_dim, bias=False)
if embed_dim != input_embed_dim
else None
)
self.embed_positions = (
PositionalEmbedding(
args.max_target_positions,
embed_dim,
padding_idx,
learned=args.decoder_learned_pos,
)
if not args.no_token_positional_embeddings
else None
)
self.layers = nn.ModuleList([])
self.layers.extend(
[
LightConvDecoderLayer(
args,
no_encoder_attn,
kernel_size=args.decoder_kernel_size_list[i],
dictionary=dictionary,
)
for i in range(args.decoder_layers)
]
)
self.adaptive_softmax = None
self.output_projection = None
self.project_out_dim = (
Linear(embed_dim, output_embed_dim, bias=False)
if embed_dim != output_embed_dim and not args.tie_adaptive_weights
else None
)
if args.adaptive_softmax_cutoff is not None:
self.adaptive_softmax = AdaptiveSoftmax(
len(dictionary),
output_embed_dim,
utils.eval_str_list(args.adaptive_softmax_cutoff, type=int),
dropout=args.adaptive_softmax_dropout,
adaptive_inputs=embed_tokens if args.tie_adaptive_weights else None,
factor=args.adaptive_softmax_factor,
tie_proj=args.tie_adaptive_proj,
)
elif self.share_input_output_embed:
self.output_projection = nn.Linear(
self.embed_tokens.weight.shape[1],
self.embed_tokens.weight.shape[0],
bias=False,
)
self.output_projection.weight = self.embed_tokens.weight
else:
self.output_projection = nn.Linear(
output_embed_dim, len(dictionary), bias=False
)
nn.init.normal_(
self.output_projection.weight, mean=0, std=output_embed_dim**-0.5
)
self.register_buffer("version", torch.Tensor([2]))
self.normalize = args.decoder_normalize_before and final_norm
if self.normalize:
self.layer_norm = LayerNorm(embed_dim)
else:
self.layer_norm = None
def forward(
self,
prev_output_tokens: Tensor,
encoder_out: Optional[Dict[str, List[Tensor]]] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
src_lengths: Optional[Any] = None,
):
"""
Args:
prev_output_tokens (LongTensor): previous decoder outputs of shape
`(batch, tgt_len)`, for teacher forcing
encoder_out (Tensor, optional): output from the encoder, used for
encoder-side attention
incremental_state (dict): dictionary used for storing state during
:ref:`Incremental decoding`
Returns:
tuple:
- the last decoder layer's output of shape `(batch, tgt_len,
vocab)`
- the last decoder layer's attention weights of shape `(batch,
tgt_len, src_len)`
"""
# embed positions
positions = (
self.embed_positions(
prev_output_tokens,
incremental_state=incremental_state,
)
if self.embed_positions is not None
else None
)
if incremental_state is not None:
prev_output_tokens = prev_output_tokens[:, -1:]
if positions is not None:
positions = positions[:, -1:]
# embed tokens and positions
x = self.embed_scale * self.embed_tokens(prev_output_tokens.contiguous())
if self.project_in_dim is not None:
x = self.project_in_dim(x)
if positions is not None:
x += positions
x = self.dropout_module(x)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
attn = None
inner_states: List[Optional[Tensor]] = [x]
# decoder layers
attn: Optional[Tensor] = None
for layer in self.layers:
encoder: Optional[Tensor] = None
encoder_padding_mask: Optional[Tensor] = None
if encoder_out is not None:
if len(encoder_out["encoder_out"]) > 0:
encoder = encoder_out["encoder_out"][0]
if (
"encoder_padding_mask" in encoder_out
and len(encoder_out["encoder_padding_mask"]) > 0
):
encoder_padding_mask = encoder_out["encoder_padding_mask"][0]
x, attn = layer(
x,
encoder,
encoder_padding_mask,
incremental_state,
)
inner_states.append(x)
if self.layer_norm is not None:
x = self.layer_norm(x)
# T x B x C -> B x T x C
x = x.transpose(0, 1)
if self.project_out_dim is not None:
x = self.project_out_dim(x)
if self.adaptive_softmax is None:
# project back to size of vocabulary
x = self.output_projection(x)
return x, {"attn": [attn], "inner_states": inner_states}
def max_positions(self):
"""Maximum output length supported by the decoder."""
if self.embed_positions is None:
return self.max_target_positions
return min(self.max_target_positions, self.embed_positions.max_positions)
def buffered_future_mask(self, tensor):
dim = tensor.size(0)
if (
not hasattr(self, "_future_mask")
or self._future_mask is None
or self._future_mask.device != tensor.device
):
self._future_mask = torch.triu(
utils.fill_with_neg_inf(tensor.new(dim, dim)), 1
)
if self._future_mask.size(0) < dim:
self._future_mask = torch.triu(
utils.fill_with_neg_inf(self._future_mask.resize_(dim, dim)), 1
)
return self._future_mask[:dim, :dim]
class LightConvEncoderLayer(nn.Module):
"""Encoder layer block.
Args:
args (argparse.Namespace): parsed command-line arguments
kernel_size: kernel size of the convolution
"""
def __init__(self, args, kernel_size=0):
super().__init__()
self.embed_dim = args.encoder_embed_dim
self.conv_dim = args.encoder_conv_dim
padding_l = (
kernel_size // 2
if kernel_size % 2 == 1
else ((kernel_size - 1) // 2, kernel_size // 2)
)
if args.encoder_glu:
self.linear1 = Linear(self.embed_dim, 2 * self.conv_dim)
self.act = nn.GLU()
else:
self.linear1 = Linear(self.embed_dim, self.conv_dim)
self.act = None
if args.encoder_conv_type == "lightweight":
self.conv = LightweightConv(
self.conv_dim,
kernel_size,
padding_l=padding_l,
weight_softmax=args.weight_softmax,
num_heads=args.encoder_attention_heads,
weight_dropout=args.weight_dropout,
)
elif args.encoder_conv_type == "dynamic":
self.conv = DynamicConv(
self.conv_dim,
kernel_size,
padding_l=padding_l,
weight_softmax=args.weight_softmax,
num_heads=args.encoder_attention_heads,
weight_dropout=args.weight_dropout,
)
else:
raise NotImplementedError
self.linear2 = Linear(self.conv_dim, self.embed_dim)
self.dropout_module = FairseqDropout(
args.dropout, module_name=self.__class__.__name__
)
self.relu_dropout_module = FairseqDropout(
args.relu_dropout, module_name=self.__class__.__name__
)
self.input_dropout_module = FairseqDropout(
args.input_dropout, module_name=self.__class__.__name__
)
self.normalize_before = args.encoder_normalize_before
self.fc1 = Linear(self.embed_dim, args.encoder_ffn_embed_dim)
self.fc2 = Linear(args.encoder_ffn_embed_dim, self.embed_dim)
self.layer_norm1 = LayerNorm(self.embed_dim)
self.layer_norm2 = LayerNorm(self.embed_dim)
def forward(self, x, encoder_padding_mask: Optional[Tensor] = None) -> Tensor:
"""
Args:
x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_padding_mask (ByteTensor): binary ByteTensor of shape
`(batch, src_len)` where padding elements are indicated by ``1``.
Returns:
encoded output of shape `(batch, src_len, embed_dim)`
"""
residual = x
normalize = self.maybe_layer_norm(before=True)
if normalize:
x = self.layer_norm1(x)
x = self.input_dropout_module(x)
x = self.linear1(x)
if self.act is not None:
x = self.act(x)
if encoder_padding_mask is not None:
x = x.masked_fill(encoder_padding_mask.transpose(0, 1).unsqueeze(2), 0)
x = self.conv(x)
x = self.linear2(x)
x = self.dropout_module(x)
x = residual + x
normalize = self.maybe_layer_norm(after=True)
if normalize:
x = self.layer_norm1(x)
residual = x
normalize = self.maybe_layer_norm(before=True)
if normalize:
x = self.layer_norm2(x)
x = F.relu(self.fc1(x))
x = self.relu_dropout_module(x)
x = self.fc2(x)
x = self.dropout_module(x)
x = residual + x
normalize = self.maybe_layer_norm(after=True)
if normalize:
x = self.layer_norm2(x)
return x
def maybe_layer_norm(self, before: bool = False, after: bool = False):
assert before ^ after, "Incorrect arguments"
return after ^ self.normalize_before
def extra_repr(self):
return (
"dropout={}, relu_dropout={}, input_dropout={}, normalize_before={}".format(
self.dropout_module.p,
self.relu_dropout_module.p,
self.input_dropout_module.p,
self.normalize_before,
)
)
class LightConvDecoderLayer(nn.Module):
"""Decoder layer block.
Args:
args (argparse.Namespace): parsed command-line arguments
no_encoder_attn (bool, optional): whether to attend to encoder outputs.
Default: ``False``
kernel_size: kernel size of the convolution
"""
def __init__(self, args, no_encoder_attn=False, kernel_size=0, dictionary=None):
super().__init__()
self.embed_dim = args.decoder_embed_dim
self.conv_dim = args.decoder_conv_dim
if args.decoder_glu:
self.linear1 = Linear(self.embed_dim, 2 * self.conv_dim)
self.act = nn.GLU()
else:
self.linear1 = Linear(self.embed_dim, self.conv_dim)
self.act = None
if args.decoder_conv_type == "lightweight":
self.conv = LightweightConv(
self.conv_dim,
kernel_size,
padding_l=kernel_size - 1,
weight_softmax=args.weight_softmax,
num_heads=args.decoder_attention_heads,
weight_dropout=args.weight_dropout,
)
elif args.decoder_conv_type == "dynamic":
self.conv = DynamicConv(
self.conv_dim,
kernel_size,
padding_l=kernel_size - 1,
weight_softmax=args.weight_softmax,
num_heads=args.decoder_attention_heads,
weight_dropout=args.weight_dropout,
)
else:
raise NotImplementedError
self.linear2 = Linear(self.conv_dim, self.embed_dim)
self.dropout_module = FairseqDropout(
args.dropout, module_name=self.__class__.__name__
)
self.relu_dropout_module = FairseqDropout(
args.relu_dropout, module_name=self.__class__.__name__
)
self.input_dropout_module = FairseqDropout(
args.input_dropout, module_name=self.__class__.__name__
)
self.normalize_before = args.decoder_normalize_before
self.conv_layer_norm = LayerNorm(self.embed_dim)
if no_encoder_attn:
self.encoder_attn = None
self.encoder_attn_layer_norm = None
else:
self.encoder_attn = MultiheadAttention(
self.embed_dim,
args.decoder_attention_heads,
dropout=args.attention_dropout,
encoder_decoder_attention=True,
dictionary=dictionary,
)
self.encoder_attn_layer_norm = LayerNorm(self.embed_dim)
self.fc1 = Linear(self.embed_dim, args.decoder_ffn_embed_dim)
self.fc2 = Linear(args.decoder_ffn_embed_dim, self.embed_dim)
self.final_layer_norm = LayerNorm(self.embed_dim)
self.need_attn = True
def forward(
self,
x: Tensor,
encoder_out: Optional[Tensor],
encoder_padding_mask: Optional[Tensor],
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
prev_conv_state: Optional[Tensor] = None,
prev_attn_state: Optional[Tuple[Tensor, Tensor]] = None,
conv_mask: Optional[Tensor] = None,
conv_padding_mask: Optional[Tensor] = None,
):
"""
Args:
x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_padding_mask (ByteTensor): binary ByteTensor of shape
`(batch, src_len)` where padding elements are indicated by ``1``.
Returns:
encoded output of shape `(batch, src_len, embed_dim)`
"""
residual = x
normalize = self.maybe_layer_norm(before=True)
if normalize:
x = self.conv_layer_norm(x)
if prev_conv_state is not None:
self.conv._set_input_buffer(incremental_state, prev_conv_state)
x = self.input_dropout_module(x)
x = self.linear1(x)
if self.act is not None:
x = self.act(x)
x = self.conv(x, incremental_state=incremental_state)
x = self.linear2(x)
x = self.dropout_module(x)
x = residual + x
normalize = self.maybe_layer_norm(after=True)
if normalize:
x = self.conv_layer_norm(x)
attn: Optional[Tensor] = None
if self.encoder_attn is not None:
residual = x
normalize = self.maybe_layer_norm(before=True)
if normalize:
x = self.encoder_attn_layer_norm(x)
if prev_attn_state is not None:
saved_state: Dict[str, Optional[Tensor]] = {
"prev_key": prev_attn_state[0],
"prev_value": prev_attn_state[1],
}
self.encoder_attn._set_input_buffer(incremental_state, saved_state)
x, attn = self.encoder_attn(
query=x,
key=encoder_out,
value=encoder_out,
key_padding_mask=encoder_padding_mask,
incremental_state=incremental_state,
static_kv=True,
need_weights=(not self.training and self.need_attn),
)
x = self.dropout_module(x)
x = residual + x
normalize = self.maybe_layer_norm(after=True)
if normalize:
x = self.encoder_attn_layer_norm(x)
residual = x
normalize = self.maybe_layer_norm(before=True)
if normalize:
x = self.final_layer_norm(x)
x = F.relu(self.fc1(x))
x = self.relu_dropout_module(x)
x = self.fc2(x)
x = self.dropout_module(x)
x = residual + x
normalize = self.maybe_layer_norm(after=True)
if normalize:
x = self.final_layer_norm(x)
return x, attn
def maybe_layer_norm(self, before: bool = False, after: bool = False):
assert before ^ after, "Incorrect usage"
return after ^ self.normalize_before
def make_generation_fast_(self, need_attn: bool = False, **kwargs):
self.need_attn = need_attn
def extra_repr(self):
return (
"dropout={}, relu_dropout={}, input_dropout={}, normalize_before={}".format(
self.dropout_module.p,
self.relu_dropout_module.p,
self.input_dropout_module.p,
self.normalize_before,
)
)
def Embedding(num_embeddings, embedding_dim, padding_idx):
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
nn.init.normal_(m.weight, mean=0, std=embedding_dim**-0.5)
nn.init.constant_(m.weight[padding_idx], 0)
return m
def Linear(in_features, out_features, bias=True):
m = nn.Linear(in_features, out_features, bias)
nn.init.xavier_uniform_(m.weight)
if bias:
nn.init.constant_(m.bias, 0.0)
return m
@register_model_architecture("lightconv", "lightconv")
def base_architecture(args):
args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048)
args.encoder_layers = getattr(args, "encoder_layers", 7)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False)
args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
args.decoder_ffn_embed_dim = getattr(
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
)
args.decoder_layers = getattr(args, "decoder_layers", 6)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
args.attention_dropout = getattr(args, "attention_dropout", 0.0)
args.relu_dropout = getattr(args, "relu_dropout", 0.0)
args.dropout = getattr(args, "dropout", 0.1)
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
args.share_decoder_input_output_embed = getattr(
args, "share_decoder_input_output_embed", False
)
args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
args.no_token_positional_embeddings = getattr(
args, "no_token_positional_embeddings", False
)
args.decoder_output_dim = getattr(
args, "decoder_output_dim", args.decoder_embed_dim
)
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
args.encoder_conv_dim = getattr(args, "encoder_conv_dim", args.encoder_embed_dim)
args.decoder_conv_dim = getattr(args, "decoder_conv_dim", args.decoder_embed_dim)
args.encoder_kernel_size_list = getattr(
args, "encoder_kernel_size_list", [3, 7, 15, 31, 31, 31, 31]
)
args.decoder_kernel_size_list = getattr(
args, "decoder_kernel_size_list", [3, 7, 15, 31, 31, 31]
)
if len(args.encoder_kernel_size_list) == 1:
args.encoder_kernel_size_list = (
args.encoder_kernel_size_list * args.encoder_layers
)
if len(args.decoder_kernel_size_list) == 1:
args.decoder_kernel_size_list = (
args.decoder_kernel_size_list * args.decoder_layers
)
assert (
len(args.encoder_kernel_size_list) == args.encoder_layers
), "encoder_kernel_size_list doesn't match encoder_layers"
assert (
len(args.decoder_kernel_size_list) == args.decoder_layers
), "decoder_kernel_size_list doesn't match decoder_layers"
args.encoder_glu = getattr(args, "encoder_glu", True)
args.decoder_glu = getattr(args, "decoder_glu", True)
args.input_dropout = getattr(args, "input_dropout", 0.1)
args.weight_dropout = getattr(args, "weight_dropout", args.attention_dropout)
@register_model_architecture("lightconv", "lightconv_iwslt_de_en")
def lightconv_iwslt_de_en(args):
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4)
args.encoder_layers = getattr(args, "encoder_layers", 7)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 1024)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4)
args.decoder_layers = getattr(args, "decoder_layers", 6)
args.attention_dropout = getattr(args, "attention_dropout", 0.1)
args.weight_dropout = getattr(args, "weight_dropout", 0.1)
args.encoder_glu = getattr(args, "encoder_glu", False)
args.decoder_glu = getattr(args, "decoder_glu", False)
args.input_dropout = getattr(args, "input_dropout", 0.0)
base_architecture(args)
@register_model_architecture("lightconv", "lightconv_wmt_en_de")
def lightconv_wmt_en_de(args):
base_architecture(args)
@register_model_architecture("lightconv", "lightconv_wmt_en_de_big")
def lightconv_wmt_en_de_big(args):
args.attention_dropout = getattr(args, "attention_dropout", 0.1)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
args.dropout = getattr(args, "dropout", 0.3)
base_architecture(args)
@register_model_architecture("lightconv", "lightconv_wmt_en_fr_big")
def lightconv_wmt_en_fr_big(args):
args.dropout = getattr(args, "dropout", 0.1)
lightconv_wmt_en_de_big(args)
@register_model_architecture("lightconv", "lightconv_wmt_zh_en_big")
def lightconv_wmt_zh_en_big(args):
args.dropout = getattr(args, "dropout", 0.2)
args.attention_dropout = getattr(args, "attention_dropout", 0.2)
args.weight_dropout = getattr(args, "weight_dropout", 0.2)
lightconv_wmt_en_de_big(args)
|